COURSE OUTLINE

GENERAL

SCHOOL	Sciences and Engineering			
ACADEMIC UNIT	Computer Science			
LEVEL OF STUDIES	1 st Cycle			
COURSE CODE	MATH-335 SEMESTER Fall			
COURSE TITLE	Optimization Techniques			
if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
		2.5	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special background			
PREREQUISITE COURSES:	MATH-196, MATH-280			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	English			
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After completion of the course students are expected to be able to:

- Visualize concepts from Linear Algebra and Optimization with the aid of Geometry.
- Compute Matrix Factorizations and apply them to dimensionality reduction and Image Compression problems.
- Formulate and solve Least-Squares problems in the context of Linear Regression.
- Compute partial derivatives and gradients of multivariable functions.
- Find the local and global extrema of multivariable functions using the Hessian and relevant derivative criteria.
- Apply Gradient Descent to univariate and multivariate optimization problems.

 Employ Linear Algebra and Mathematical Optimization techniques to Data Science and Machine Learning

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Adapting to new situations Decision-making

Working independently

Team work
Working in an international environment

Working in an interdisciplinary environment

Production of new research ideas

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment

Showing social, professional and ethical responsibility and sensitivity to

gender issues

Criticism and self-criticism

Production of free, creative and inductive thinking

Others...

Analysis and synthesis of data with the use of the necessary technology, adapting to new situations, decision-making, working independently, working in an interdisciplinary environment, analytical, critical and quantitative thinking, synthesis of ideas.

SYLLABUS

- 1.Introduction (Motivation; Some examples of Optimization problems).
- 2. Review of Matrices and Linear Systems:
 - a. Linear Systems (Geometry and matrix representation)
 - b. Matrix Fundamentals (Basic operations, Matrices as linear maps, Determinants, Matrices with special structure and properties.
 - c. Solution of linear systems using Gaussian elimination.

3. Vector Spaces:

- a. Subspaces and affine sets.
- b. Review: linear independence, basis and dimension, rank of a matrix, the rank and nullity theorem.
- c. Inner products; Vector and Matrix Norms and their geometric interpretation; Orthogonality and Projections; The Gram-Schmidt procedure.

4. Matrix Factorizations:

- a. Eigenvalues and Eigenvectors
- b. Geometric and Algebraic multiplicity, eigenspaces.
- c. The LU and Cholesky decompositions.
- d. Eigendecomposition and Diagonalization
- e. Orthogonal diagonalization of a symmetric matrix. Spectral decomposition and dimensionality reduction.
- f. The SVD. Image compression and other applications.

5. Continuous Optimization Problems and Gradient Descent:

- a. Univariate Optimization (Taylor's Theorem, Univariate Gradient Descent: Convergence and Divergence)
- b. Multivariable functions and partial derivatives. The Gradient vector.
- c. Multivariate Optimization. (Taylor's Theorem, Local and Global Extrema, the Hessian)

- d. Convexity. (Convex sets and Convex functions, the First and Second Derivative Conditions)
- e. Gradient descent. (Checking with the aid of Finite Differences, Decaying Learning Rates, Line Search, Stochastic Gradient Descent, Typical Objective Functions in Machine Learning)
- f. Least squares as an optimization problem. Regression.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of ICT in teaching / Χρήση ΤΠΕ Communication with students / Επικοινωνία με Φοιτητές		
TEACHING METHODS			
The manner and methods of teaching are described in detail.	Activity	Semester workload	
Lectures, seminars, laboratory practice,	Lectures	35	
fieldwork, study and analysis of bibliography,	Practice problems	46	
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Written and	21	
visits, project, essay writing, artistic creativity, etc.	programming		
	assignments	_	
The student's study hours for each learning activity are given as well as the hours of non-	Study of the textbook,	48	
directed study according to the principles of the	lecture notes and online		
ECTS	material Course total	150	
CTUDENT DEDECTARANCE	Course total	150	
STUDENT PERFORMANCE EVALUATION			
Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, openended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 - Final Examination - Midterm Examination - Assignments (written and programming) - Participation 		

ATTACHED BIBLIOGRAPHY

Required Textbooks / Read	dings:			
Title	Author(s)	Publisher	Year	ISBN

Mathematics for Machine Learning	Marc Peter Deisenroth, A. Aldo	Free Online Version /	2021	https://mml- book.com.
	Faisal, Cheng Soon Ong	Cambridge University Press	2020	9781108455145 (hardcopy, in library)
Linear Algebra and Optimization for Machine Learning: A Textbook	Charu C. Aggarwal	Springer	2020	9783030403447 (e-book)
Elementary Linear Algebra: Applications Version	Howard Anton, Chris Rorres, Anton Kaul	Wiley 12 th Ed.	2019	9781119670766 (e-book)

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Introduction to	Stephen Boyd,	Cambridge	2018	https://web.stanford.edu
applied linear	Lieven	University		/ ~hovd/vmls/
algebra:Vectors,	Vandenberghe	Press		<u>~boyd/vmls/</u>
Matrices and				(e-book, available online)
Least Squares				
Elementary Linear	B. Kolman and D.	Pearson 9 th Ed.	2017	9780134718538
Algebra	Hill			
Optimization for Data	Stephen Wright	Cambridge	2022	9781009004282
Analysis	and Benjamin	University		(e-book)
	Recht	Press		