COURSE OUTLINE

GENERAL

SCHOOL	Sciences and Engineering			
ACADEMIC UNIT	Computer Science			
LEVEL OF STUDIES	1 st Cycle			
COURSE CODE	COMP-474	SEMESTER Spring		
COURSE TITLE	Cloud Computing			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
		2.5	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	specialization			
PREREQUISITE COURSES:	COMP-270 and Junior Standing			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	English			
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After completion of the course, students are expected to be able to:

- Describe the concept, benefits, principles, architecture, and implementation technology of cloud computing
- Compare and contrast cloud computing with other computing paradigms
- Explain in detail aspects of cloud computing including: virtualization, scalability, elasticity, and load balancing
- Explain fundamental architecture, models, services, and platforms that are used in the cloud computing domain
- Be aware of problems and challenges as to avoid them when designing and developing

cloud-based applications

- Design and develop cloud-based applications to be hosted by various cloud computing infrastructures
- Demonstrate the ability to select an appropriate technology/platform/environment in order to provide a cloud computing-based application that fulfills the design requirements

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology

Adapting to new situations Respect for the natural environment

Decision-making Showing social, professional and ethical responsibility and sensitivity to Working independently gender issues

Team work Criticism and self-criticism

Working in an international environment Production of free, creative and inductive thinking

Working in an interdisciplinary environment
Production of new research ideas

duction of new research laeds

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations

Others...

Decision-making

Working independently

Project planning and management

Production of free, creative and inductive thinking

SYLLABUS

- 1.Introduction to Cloud Computing
 - a. Definition of Cloud Computing and Technology Landscape
 - b. The Cloud ComputingCharacteristics
- 2.Cloud Architecture and Concepts
 - a. Cloud Service Models (e.g., IaaS, PaaS, SaaS)
 - b. Deployment Model (e.g., Private, Public, Hybrid)
- 3. Virtualization in Depth
 - a. Virtualization Technologies
 - b. Hardware Virtualization vs Containerization
 - c. Overprovisioning
- 4. Cloud Elasticity
 - a. Horizontal and Vertical Scalability
 - b. Load Balancing
 - c. Monitoring metrics and SLOs
- 5. Hands-on Tutorial on Containerization
 - a. Docker in practice
 - b. Deployment of Cloud Applications
- 6.Microservices and DevOps
 - a. Monoliths vs Microservices
 - b. Microservices design patterns
 - c. Continuous Delivery Pipelines

- 7.Cloud security and networks
 - a. Cloud-based Virtual Networks
 - b. Virtual Network Functions (e.g., firewalls) and Network Rules
- 8. Cloud datacenters and economies of scale
 - a. Cloud Computing as economy of scale
 - b. Total cost of ownership (TCO)
- 9. The Future of computing
 - a. IoT and Edge Computing
 - b. The IoT-Edge-Cloud Continuum
 - c. Green computing and sustainability

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of ICT in teaching / Χρήση ΤΠΕ Communication with students / Επικοινωνία με Φοιτητές		
TEACHING METHODS			
The manner and methods of teaching are described in detail.	Activity	Semester workload	
Lectures, seminars, laboratory practice,	Lectures	35	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Preparation	26	
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Coursework	40	
	Exam Preparation	45	
	Examination	4	
The student's study hours for each learning activity are given as well as the hours of non-	Course total	150	
directed study according to the principles of the ECTS			
STUDENT PERFORMANCE	- Hands-on Projects		
EVALUATION	ON - Class Participation		
Description of the evaluation procedure	- Midterm Examination		
Language of evaluation, methods of evaluation,	tion, - Final Exam		
summative or conclusive, multiple choice			
questionnaires, short-answer questions, open- ended questions, problem solving, written work,			
essay/report, oral examination, public			
presentation, laboratory work, clinical examination of patient, art interpretation, other	·····		
examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to students.			

ATTACHED BIBLIOGRAPHY

Required Textbooks /	Readings:	

Title	Author(s)	Publisher	Year	ISBN
Cloud Computing	Dan Marinescu	Elsevier	2022	9780323852777
Theory and Practice				
3rd Edition				

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Cloud Computing for	lan Foster and	The MIT	2017	9780262343992
Science and	Dennis B. Gannon	Press		
Engineering				
Cloud Computing:	Thomas Earl and	Pearson	2013	9780133489903
Concepts, Technology	Zaigham Mahmood			
and Architecture	and Ricardo Puttini			
Docker in Action	Jeff Nickoloff and	Manning	2019	9781617294761
	Stephen Kuenzli			