COURSE OUTLINE

GENERAL

SCHOOL	Sciences and Engineering		
ACADEMIC UNIT	Computer Science		
LEVEL OF STUDIES	1 st Cycle		
COURSE CODE	COMP-448	SEMESTER	Fall
COURSE TITLE	Computer Vision		
if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS
		2.5	6
Add rows if necessary. The organisation of methods used are described in detail at (a			
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialization		
PREREQUISITE COURSES:	COMP-221 and MATH-280		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	English		
IS THE COURSE OFFERED TO ERASMUS STUDENTS			
COURSE WEBSITE (URL)			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

At the end of this course, students should:

- Understand the fundamentals of classic computer vision
- Be able to identify the recent trends and developments in artificial intelligence and particularly deep learning for computer vision
- Identify limitations of the current state of the field and the immense potential for commercial applications of computer vision
- Apply mathematical methods in a rigorous manner in order to solve computer vision tasks
- Know how an image is formed and how cameras work

- Know what features are and how they are extracted from an image
- Know what edge and corner detection is
- Know how features are described, stored and how they are used to solve computer vision problems
- Understand classic computer vision algorithms such as RANSAC or Normalized cuts as well as methods such as PCA
- Be confident in camera models and projective transformations
- Know what camera extrinsic and intrinsic parameters are how to perform camera calibration
- Understand how stereo and multi-view reconstruction works, and be able to appreciate structure from motion algorithms
- Understand high-level tasks such as segmentation, recognition, detection
- Know how many of these problems can be solved with deep neural networks

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Adapting to new situations
Decision-making

Working independently

Team work

Working in an international environment Working in an interdisciplinary environment

Production of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment

Showing social, professional and ethical responsibility and sensitivity to

gender issues

Criticism and self-criticism

Production of free, creative and inductive thinking

Others...

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations

Decision-making

Working independently

Production of new research ideas

Project planning and management

Criticism and self-criticism

Production of free, creative and inductive thinking

SYLLABUS

- 1. Introduction to Computer Vision
- 2. Fundamentals Image Formation & Cameras
- 3. Fundamentals Color
- 4. Filtering Edge and corner detection
- 5. Feature descriptors and matching
- 6. Fitting, RANSAC, Image alignment & stitching
- 7. Recognition
- 8. Segmentation
- 9. Camera models Projective Transformations

- 10. Camera calibration
- 11. Epipolar geometry Stereo reconstruction
- 12. Multi-view stereo Structure from Motion
- 13. Optical flow
- 14. Neural networks fundamentals
- 15. Convolutional neural networks

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND	Use of ICT in teaching / Χρήση ΤΠΕ		
COMMUNICATIONS TECHNOLOGY	Communication with students / Επικοινωνία με Φοιτητές		
Use of ICT in teaching, laboratory education,			
communication with students			
TEACHING METHODS The manner and methods of teaching are	A - 11 - 11	C	
described in detail.	Activity	Semester workload	
Lectures, seminars, laboratory practice,	Lectures	35	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Preparation,	60	
workshop, interactive teaching, educational	homework		
visits, project, essay writing, artistic creativity, etc.	Coursework &	28	
	Assignments		
The student's study hours for each learning activity are given as well as the hours of non-	Exam preparation	25	
directed study according to the principles of the	Final Exam	2	
ECTS			
	Course total	150	
STUDENT PERFORMANCE			
EVALUATION	Midterm Exam		
Description of the evaluation procedure	Coursework & Assignments.		
Language of evaluation, methods of evaluation	Final Fxam		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice	Fillal Exalli		
questionnaires, short-answer questions, open-			
ended questions, problem solving, written work,			
essay/report, oral examination, public presentation, laboratory work, clinical			
examination of patient, art interpretation, other			
Considerable defined analysis and artists			
Specifically-defined evaluation criteria are aiven, and if and where they are accessible to			
students.			

ATTACHED BIBLIOGRAPHY

Required Textbooks / Readings:					
	Title	Author(s)	Publisher	Year	ISBN

Computer Vision: Algorithms and Applications*	Richard Szeliski	Springer	2022	978-3-030-34371- 2
Computer Vision – A Modern Approach	David A. Forsyth and Jean Ponce	Pearson	2011	978-0-136-08592- 8

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Multiple View	Richard Hartley and	Cambridge	2004	070 0 544 04460
Geometry in	Andrew Zisserman	University		978-0-511-81168- 5
Computer Vision		Press		
Pattern	Christopher M. Bishop	Springer	2006	978-0-387-31073-
Recognition and				
Machine				
Learning				
Deep Learning**	Ian Goodfellow and	MIT Press	2016	079 0 262 02561
	Yoshua Bengio and			978-0-262-03561- 3
	Aaron Courville			_