COURSE OUTLINE

GENERAL

SCHOOL	Sciences and Engineering			
ACADEMIC UNIT	Computer Science			
LEVEL OF STUDIES	1 st Cycle			
COURSE CODE	COMP-344 SEMESTER Fall			
COURSE TITLE	Machine Learning and Data Mining II			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
		2.5	6	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special background			
PREREQUISITE COURSES:	COMP-244			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	English			
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After completing the course, students are expected to be able to:

- Analyse complex data mining problems and formulate abstract, structured solutions.
- Apply core data mining concepts and techniques to solve practical problems in a variety of contexts.
- Pre-process and prepare datasets for analysis, selecting appropriate techniques for data transformation and cleaning.
- Implement and evaluate clustering methods to identify patterns and structure in data.

- Extract and interpret association rules from data to uncover meaningful relationships.
- Apply and assess anomaly detection algorithms on both real-time and offline data, selecting suitable approaches based on data characteristics and problem requirements

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations Respect for the natural environment

Decision-making Showing social, professional and ethical responsibility and sensitivity to

gender issues Working independently

Team work Criticism and self-criticism

Working in an international environment Production of free, creative and inductive thinking

Working in an interdisciplinary environment Others...

Production of new research ideas

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Adapting to new situations

Decision-making

Working independently

Project planning and management

Criticism and self-criticism

Production of free, creative and inductive thinking

SYLLABUS

- 1.Introduction to Data Clustering
 - a. Applications
 - b. Basic Concepts, Similarity Metrics, Distance Metrics
- 2. Partitional Clustering
 - a. The K-means algorithm
 - b. K-means as an optimization problem
- 3. Hierarchical Clustering
 - a. Basic Agglomerative Hierarchical Clustering
 - b. Strengths and Weaknesses
- 4. Density Based Clustering
 - a. General Principles
 - b. The DBSCAN Algorithm
 - c. Subspace Clustering
- 5.Cluster Evaluation
 - a. Unsupervised Cluster Evaluation: Cohesion and Separation
 - b. Unsupervised Cluster Evaluation: Proximity Matrix
 - c. Unsupervised Evaluation of Hierarchical Clustering
 - d. Supervised Measures of Cluster Validity
 - e. Assessing the Significance of Cluster Validity Measures

- 6. Prototype-Based Clustering
 - a. Fuzzy Clustering
 - b. Mixture Models
 - c. Self-Organizing Maps

7. Graph Based Clustering

a. Minimum Spanning Tree

8. Association Analysis

- b. Frequent Item Generation (the Apriori principle)
- c. Rule Generation
- d. The FP-Growth Algorithm
- e. Evaluation of Association Patterns

9. Anomaly Detection

- a. Preliminaries
- b. Statistical Approaches
- c. Proximity-Based
- d. Density –Based
- e. Clustering -Based

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of ICT in teaching / Χρήση ΤΠΕ Communication with students / Επικοινωνία με Φοιτητές		
TEACHING METHODS			
The manner and methods of teaching are	Activity	Semester workload	
described in detail. Lectures, seminars, laboratory practice,	Lectures	35	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Preparation	33	
	Coursework	50	
	Exams Preparation	30	
	Final Exam	2	
The student's study hours for each learning activity are given as well as the hours of non-			
directed study according to the principles of the ECTS	Course total	150	
STUDENT PERFORMANCE			
EVALUATION Description of the evaluation procedure	Mid-term exam, Projects, Final Examination, Participation/Homework Assignments/Quizzes		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, openended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other			

pecifically-defined	evaluation	criteria	are
given, and if and wh	nere they are	accessib	le to
students.			

ATTACHED BIBLIOGRAPHY

Required Textbooks /	Readings:			
Authors	Title	Publisher	Year	ISBN
Tan, Steinbach, Kumar	Introduction to Data Mining, 2 nd Edition	Pearson	2019	978-0133128901
Aurélien Géron	Hands-On Machine Learning with Scikit- Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2 nd Edition	O'Reilly	2019	978-1492032649

Recommended Textbooks / Readings:

Authors	Title	Publisher	Year	ISBN
Han, Kamber, Pei	Data Mining: Concepts	Morgan	2011	9380931913
	and Techniques, Third	Kaufmann		
	Edition			
Witten, Frank, Hall	Data Mining: Practical	Morgan	2011	0123748569
	Machine Learning Tools	Kaufmann		
	and Techniques			