COURSE OUTLINE

GENERAL

SCHOOL	Sciences and Engineering		
ACADEMIC UNIT	Computer Science		
LEVEL OF STUDIES	1 st Cycle		
COURSE CODE	COMP-321	SEMESTER Fa	
COURSE TITLE	Theory of Computation		
if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS
		2.5	6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).			
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special background		
PREREQUISITE COURSES:	COMP-270		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	English		
IS THE COURSE OFFERED TO ERASMUS STUDENTS			
COURSE WEBSITE (URL)			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After completion of the course students are expected to be able to:

- apply techniques to construct finite state machines and regular expressions
- apply techniques to design context-free languages
- design a (non)deterministic finite-state machine to accept a specified language
- explain how some problems have no algorithmic solution
- analyze examples that illustrate the concept of uncomputability
- prove that a language is in a specified class and that it is not in the next lower class.
- apply techniques to convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular expressions, and between PDAs and CFGs

- analyze the Church-Turing thesis and its significance
- discuss the Halting Problem
- demonstrate the usage of reductions to decide if a problem is solvable or insolvable
- analyze class P, class NP, NP-complete problems.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations Respect for the natural environment

Decision-making Showing social, professional and ethical responsibility and sensitivity to

Working independently gender issues

Team work Criticism and self-criticism

Working in an international environment Production of free, creative and inductive thinking

Working in an interdisciplinary environment
Production of new research ideas Others...

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Adapting to new situations

Decision-making

Working independently

Production of free, creative and inductive thinking

SYLLABUS

- 1. Automata and Languages
 - a. Regular Languages
 - Finite Automata (FA)
 - ii. Deterministic FA and Nondeterministic FA
 - iii. Regular Expressions and Languages
 - b. Context-free Grammars and Languages
 - i. Context-free Grammars
 - ii. Pushdown Automata (PDAs)
 - iii. Non-Context-Free Languages
- 2. Computability Theory
 - a. The Church-Turing Thesis
 - i. Turing Machines
 - ii. Variants of Turing Machines
 - b. Decidability
 - i. Decidable Languages
 - ii. Diagonalization
 - iii. The Halting Problem
 - c. Reducibility
 - i. Reductions
- 3. Complexity Theory
 - a. Time complexity (class P, class NP, NP-completeness)

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of ICT in teaching / Χρήση ΤΠΕ Communication with students / Επικοινωνία με Φοιτητές		
TEACHING METHODS			
The manner and methods of teaching are described in detail.	Activity	Semester workload	
Lectures, seminars, laboratory practice,	Lectures	35	
fieldwork, study and analysis of bibliography,	Preparation,	77	
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	assignments		
visits, project, essay writing, artistic creativity,	Exam Preparation	36	
etc.	Final Exam	2	
The student's study hours for each learning	Course total	150	
activity are given as well as the hours of non- directed study according to the principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION Description of the evaluation procedure	Final Exam, Midterm Exam, and Assignments		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, openended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

ATTACHED BIBLIOGRAPHY

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Introduction to	John Hopcroft, Rajeev	Pearson	2006	978-0321455369
Automata Theory,	Motwani, Jeffrey			
Languages, and	Ullman			
Computation (3 rd Ed.)				

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Introduction to the	William A. Goddard	Jones & Bartlett	2008	978-0763741259
Theory of Computation		Publishers		

Introduction to the Theory of Computation (3 rd Ed.)	Michael Sipser	Course Technology	2012	978-1133187813