Course Title: Smart Power Grid Management

ECTS Credits: 7.5

Department: Engineering

Semester: Fall, Spring

Prerequisites: None

Type of Course: Required

Field: Oil, Gas and Energy Engineering

Language of Instruction: English

Level of Course: 2nd Cycle

Year of Study: 1st

Lecturer(s): Dr. Stelios Hirodontis

Co-requisites: None

Mode of Delivery: Face-to-face

Work Placement: N/A

Objectives of the Course:

The main objectives of the course are to:

- Introduce students to cutting-edge technologies for connecting the power infrastructure to modern computerized communications networks
- Provide solid knowledge on standardization, applications, protocols, automation, architecture, and management of grids
- Develop the tools for quantitative and qualitative performance analysis of bidirectional communication, automation, renewable energy integration, and wireless sensor networks
- Provide solid technical knowledge on renewable energy sources and their integration into smart grids

Learning Outcomes:

After completion of the course students are expected to:

- Explain the main characteristics, differences, advantages, and disadvantages of smart grid networks
- Analyze and evaluate the performance and efficiency of smart grids and microgrids
- Evaluate the Multiple distributed smart microgrids with a self-autonomous, energy harvesting wireless sensor network
- Perform calculations for Wireless sensor networks for consumer applications in the smart grid
- Describe low-voltage, DC grid–powered LED lighting system with smart ambient sensor control for energy conservation in green building

Course Contents:

- Demand-side energy management
- The modernization of distribution automation featuring intelligent FDIR and
- Volt-variation optimization
- Advanced asset management
- Wide-area early warning systems
- The integration of renewable energy sources into smart grids
- The micro-grid in the electric system transformation
- Enhancing the integration of renewable in radial distribution networks through smart links
- Voltage-based control of DG units and active loads in smart micro-grids
- Electric vehicles in a smart grid environment
- Low-voltage, DC grid–powered LED lighting system with smart ambient sensor control for energy conservation in green building
- Multiple distributed smart micro-grids with a self-autonomous, energy harvesting wireless sensor network
- Wireless sensor networks for consumer applications in the smart grid
- ZigBee-based wireless monitoring and control system for smart grids

Learning Activities and Teaching Methods:
- Lectures, Projects, Discussion

Assessment Methods:
- Homework, Project assignments, exams, final exam.

Required Textbooks/Reading:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Publisher</th>
<th>Year</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krzysztof Iniewski</td>
<td>Smart Grid Infrastructure & Networking</td>
<td>McGraw-Hill</td>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Textbooks/Reading:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Publisher</th>
<th>Year</th>
<th>ISBN</th>
</tr>
</thead>
</table>