Course Code	Course Title	ECTS Credits
OGEE-492	Capstone Design Project	6
Department	Semester	Prerequisites
Engineering	Fall, Spring	Approval by the Department
Type of Course	Field	Language of Instruction
Required	Oil & Gas Engineering	English
Level of Course	Year of Study	Lecturer
1st Cycle	4 th	Ms Natalia Kovalchuk
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Teach students important information retrieval, research techniques and practices;
- Promote team work in a team environment;
- Observe all stages of a field development plan (FDP);
- Instruct students on how to build a static model in Petrel software, upscale it and perform simulations in ECLIPSE;
- Introduce students to uncertainty evaluation of reservoir parameters and model validation;
- Help student appreciate economics calculations of the field development plan;
- Promote engineering ethics and respect to the environment and society;
- Instruct students how to write proper reports and how to present their work in front of their colleagues;
- Teach students how to properly plan their activities in order to successfully achieve their design goals and how to meet their own deadlines.

Learning Outcomes:

Upon completion of the course students are expected to:

- Use research skills in an engineering topic in order to device a successful design for their project idea;
- Become good team players and collaborate seamlessly with others;
- Be able to synthesise geological and geophysical data and come-up with drilling strategies for production and secondary extraction;
- Become familiar with the merits and challenges from software use and trustworthiness of generated data;
- Be able to estimate expenditures and value generation as part of a field development project;
- Identify important principles of ethics in engineering practices;
- Write good technical reports and deliver effective presentations;

• Plan, organise and schedule project activities in order to successfully complete an engineering project.

Course Contents:

- Utilise citation tools, databases (OnePetro), research journals, search engines, magazines, theses, etc.;
- Demonstrate team work and collaboration with others toward the successful completion of a project;
- Understand the limitations and advantages of reservoir modelling, reserves estimation, transport processes and data visualisation;
- Examine strategies for developing an actual hydrocarbons field;
- Learn advanced computational and simulation tools, namely, Petrel, ECLIPSE and data visualisation;
- Investigate uncertainties of reservoir parameters and model verification methods;
- Calculate economic aspects of a field development project;
- Consider environmental and societal issues of hydrocarbon field development;
- Write final report and deliver presentation of field development plan findings.

Learning Activities and Teaching Methods:

Lectures/seminars, software tutorials and project supervision.

Assessment Methods:

Progress reports, presentation, final report.

Required Textbooks/Reading:

1104						
Authors	Title	Publisher	Year	ISBN		
N. Kovalchuk	In-class notes on Petrel and ECLIPSE		2016			
W. Strunk, E. B. White, R. Angell	The Elements of Style	Longman, 4 th Edition	1999	978-0205313426		

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Satter, A. and	Reservoir engineering: the	Elsevier;	2016	978-0-12-
Iqbal G. M.	Fundamentals, Simulation, and	GPP		800219-3
	Management of Conventional			
	and Unconventional Recoveries			
Michael J.	Geostatistical Reservoir	Oxford	2014	978-
Pyrcz and	Modeling	University		0199731442
Clayton V.		Press		
Deutsch				
Frank R.	Giving a Talk	University	2000	
Kschichang		of Toronto		