

Course Syllabus

Course Code	Course Title	ECTS Credits
META-525DL	Data Science for the Metaverse	10
Prerequisites	Department	Semester
None	Digital Innovation	Fall/Spring
Type of Course	Field	Language of Instruction
Elective	Metaverse	English
Level of Course	Lecturer	Year of Study
2 nd Cycle	Dr. Stylianos Kampakis	1 st
Mode of Delivery	Work Placement	Corequisites
Distance Learning	N/A	N/A

Course Objectives:

The main objectives of the course are to:

- 1. Explain the basic concepts of data science and how it can be applied in Metaverse.
- 2. Analyze the role of data science and artificial intelligence in the metaverse through case studies and practical applications.
- 3. Apply statistical methods to analyze trends, compare projects, and make forecasts.
- 4. Evaluate the applications of data science in the Metaverse, including machine learning, agent-based modeling, tokenomics, digital land valuation, DeFi protocols, and GameFi.

Learning Outcomes:

- After completion of the course students are expected to be able to:
- 1. Understand the role of data science and statistical methods in the Metaverse:
- 2. Demonstrate how machine learning can be applied in Metaverse.
- 3. Illustrate how to use Python libraries for machine learning algorithms
- 4. Develop a data strategy for metaverse projects

Course Content:

1. Data analysis and data science

- What is data science?
- History of data science
- Basic concepts in data analysis, types of data and types of data scientists
- 2. Artificial intelligence and data science in the metaverse
 - How is data science used in the metaverse?

- Data science and its applications in metaverse
- Case studies for AI and data science in the metaverse

3. Statistical methods

- Exploratory data analysis
- Summary metrics
- Linear regression
- Hypothesis testing for linear regression
- Introduction to R for statistics
- Introduction to Hypothesis testing
- Other advanced statistical models

4. Exploring the metaverse through statistics

- Studying metaverse project data from coinmarketcap, coingecko and NFTValuations.com
- Forecasting and analysing trends using the R programming language
- Comparing blockchain projects
- Creating interesting visualisations and dashboards

5. Machine learning and the metaverse

- What is machine learning?
- Types of machine learning
- Supervised learning
- Unsupervised learning
- Active learning
- Recommender systems
- Reinforcement learning

6. Data strategy and data products

- What is data strategy?
- Examples of how to approach data strategy in a new venture
- Data strategy for metaverse projects
- Creating data products
- Data science in decision making
- Data science in entrepreneurship
- Data products in the metaverse

7. Agent-based modelling for complex systems

- What is agent-based modelling?
- History of agent-based modelling
- Modelling simple economies and agents
- Agent-based modelling

8. Applications of data science in tokenomics

- Statistical models for tokenomic valuations
- Agent based modelling for simulating token economies
- Forecasting project growth
- Valuing NFTs
- 9. Applications of data science in digital land
 - Valuing digital land
 - Agent based modelling for games and economies
- 10. Applications of data science in DeFi and GameFi
 - Designing DeFi protocols

- GameFi and Play2Earn
- **11. Frameworks for using data science in the metaverse**
 - Frameworks for data science applications
 - Frameworks for data products
 - Frameworks for tokenomics
 - Frameworks for data strategy
- 12. Summary: Recap and case studies
 - Putting it all together
 - Case studies in metaverse games

Learning Activities and Teaching Methods:

- Faculty Lectures
- Guest-Lectures Seminars
- Directed and Background Reading
- Case Study Analysis
- Academic Paper Discussion
- Simulations
- Student-led Presentations
- In-Class Exercises

Assessment Methods:

- Interactive activities
- Assignment
- Final exams

Assessment Methods in alignment with Intended Learning Outcomes:

		Intended Learning Outcomes to be assessed			
Assessment Method	Weighting	LO1	LO2	LO3	LO4
Interactive activities	30%	\checkmark	\checkmark	\checkmark	
Assignment	10%	\checkmark	\checkmark	\checkmark	\checkmark
Exams	60%	\checkmark	\checkmark	\checkmark	\checkmark

Student Study Effort Expected:

Student Study Effort Expected	Hours	
Lectures	12h	
Assignment	30h	
Interactive activities and forum participation	65h	
Reading and research	140h	
Exam	3h	
Total	250h	

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
The Decision Maker's Handbook to Data Science: A Guide for Non- Technical Executives, Managers, and Founders.	Stylianos Kampakis,	APress	2019	978-1484254936

Recommended Textbooks / Readings:

- David L. Olson & Majid Nabavi, Introduction to business analytics, Business Expert Press, 2020
- Kieth A. Carlson & Jennifer R. Winquist, An Introduction to Statistics: An Active Learning Approach, SAGE Publicatins, 2021
- Sara Guido & Andreas C. Mueller, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Media, 2016
- Steven F. Railsback, Agent-Based and Individual-Based Modeling: A Practical Introduction, Princeton University Press, 2019
- Wattenhofer, Roger. The science of the blockchain. CreateSpace Independent Publishing Platform, 2016.