

Course Syllabus

Course Code	Course Title	ECTS Credits	
META-522	Smart Contracts Programming for Metaverse Applications	10	
Prerequisites	Department	Semester	
None	Digital Innovation	Fall/Spring	
Type of Course	Field	Language of Instruction	
Elective	Metaverse	English	
Level of Course	Lecturer	Year of Study	
2 nd Cycle	Dr. Klitos Christodoulou	1 st	
Mode of Delivery	Work Placement	Corequisites	
Face to face	N/A	N/A	

Course Objectives:

The main objectives of the course are to:

- 1. Explain Metaverse decentralization and how it relates to blockchain technology.
- 2. Provide students with an in depth understanding of smart contracts and how they enable decentralization and automation in the Metaverse.
- 3. Equip students with the skills in designing and implementing smart contracts for Metaverse applications.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Understand Metaverse decentralization and the Blockchain
- 2. Apply knowledge of Ethereum-based smart contracts
- 3. Design smart contracts for the Metaverse applications
- 4. Develop smart contracts for the Metaverse applications

Course Content:

Session 1. Introduction to Metaverse decentralisation

- Metaverse decentralization and the Blockchain
- Blockchain Architectural Overview
- The Web of Trust
- Ethereum's main components
- Ethereum's sub-protocols

- Smart Contracts and Decentralized Applications (dApps)
- Web apps vs. dApps

Session 2. Metaverse and smart contracts

- An overview to the history of smart contracts
- Smart contracts enabling decentralization and automation in the Metaverse
- Examples of smart contracts in Metaverse applications
- Smart contract lifecycle
- Ethereum's smart contract languages
- Interfacing with Ethereum Networks (overview of Ethereum Networks, Clients, Wallets, Transactions etc.)
- The Solidity Programming Language
- Development Environments

Session 3. Ethereum based smart contracts

- Overview of Ethereum's tech stack, architecture
- The Ethereum reward scheme, Mist, EVM, Swarm, Whisper, Eth, Gas
- A simple Solidity Contract (Contract Walk-through)
- The Solidity compiler
- Ethereum Contract ABI
- Deployment with the Web3.js or Web3J library

Session 4. Virtual Machines and Beyond

- History of Virtual Machines
- State replication, consensus, and the Ethereum Architecture
- Introduction to the Ethereum Virtual Machine and EVM Byte Code interpretation
- Incentivisation structures, rewards schemes, and gas pricing

Session 5. Metaverse dApp development pipeline

- Introduction to development with Solidity
- Development environments (Truffle)
- Intro to Solidity
- Smart contract layout
- The structure of.*sol* source file

Session 6. Deep-dive into Solidity

- Understanding the different compiler versions and pragmas
- Authoring smart contracts
- Contract definitions
- Basic data types
- Local and State Variables

Session 7. Global variables and functions

- Predefined Global Variables
- Structs and Enums
- Mapping and Arrays
- Build-in Functions (e.g., addmod, keccak256)

User Functions

Session 8. Expressions and control structures

- Valid expressions of the language
- Exception Handling (e.g., assert, require, revert, throw)
- Events and Logging
- Conditional logic
- Implementation of loops

Session 9. Object oriented constructs

- Contract constructor and selfdestruct
- Function Modifiers and Fallback functions
- Calling other contracts
- Inheritance and Multiple Inheritance
- Declaring Abstract Classes and Interfaces
- Implementation of Abstract interfaces
- Function Overloading

Session 10. Experimenting with front-end libraries

- Intro to front-end web interfaces
- Decentralized Data Storage
- The Ethereum Name Services (ENS)

Session 11. Unit testing and debugging contracts

- Estimating Gas Costs
- Basics of using Truffle for testing
- Troubleshooting and Debugging
- Common design patterns
- Smart Contract Security overview of attacks on Ethereum smart contracts

Session 12. Smart contract programming for Metaverse application project

- Working in teams to design smart contacts for a Metaverse application
- Implement smart contacts for a Metaverse application prototype
- Presentation and analysis of the project
- Exploring trends in smart contracts programming for the Metaverse

Learning Activities and Teaching Methods:

- Faculty Lectures
- Guest-Lectures Seminars
- Directed and Background Reading
- Case Study Analysis
- Academic Paper Discussion
- Simulations
- Student-led Presentations
- In-Class Exercises

Assessment Methods:

- Interactive activities and classroom participation
- Project
- Final exams

Assessment Methods in alignment with Intended Learning Outcomes:

		Intended Learning Outcomes to be assessed			
Assessment Method	Weighting	LO1	LO2	LO3	LO4
Interactive activities	12%	\checkmark	\checkmark	\checkmark	\checkmark
Project	28%	\checkmark	\checkmark	\checkmark	\checkmark
Exams	60%	\checkmark	\checkmark	\checkmark	\checkmark

Student Study Effort Expected:

Student Study Effort Expected	Hours
Lectures	12h
Project	80h
Interactive activities and participation	20h
Reading and research	135h
Exam	3h
Total	250h

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Mastering Ethereum: building smart contracts and dapps	Antonopoulos, Andreas M., and Gavin Wood.	O'Reilly Media	2018	978-1491971949

Recommended Textbooks / Readings:

- Atzei, N., Bartoletti, M., & Cimoli, T. (2017). A survey of attacks on ethereum smart contracts (sok). In International Conference on Principles of Security and Trust (pp. 164-186). Springer.
- Christodoulou, K., Katelaris, L., Themistocleous, M., Christoudoulou, P., & Iosif, E. (2022). NFTs and the Metaverse Revolution: Research Perspectives and Open Challenges. In M. Lacity & H. Treiblmaier (Eds.), Blockchains and the Token Economy: Theory and Practice (pp. 139-178). Palgrave Macmillan.
- ConsenSys. (n.d.). A guide to available tools and platforms for developing on Ethereum. GitHub. https://github.com/ConsenSys/ethereum-developer-tools-list

- ConsenSys. (n.d.). Decentralized Storage: The Backbone of the Third Web. ConsenSys. https://media.consensys.net/decentralized-storage-the-backbone-of-the-third-web-d4bc54e79700
- ConsenSys. (n.d.). Ethereum Ecosystem Resources. GitHub. https://github.com/ConsenSys/ethereum-developer-tools-list/blob/master/EcosystemResources.md
- Mohan, C. (2018). Blockchains and databases: A new era in distributed computing. In 2018 IEEE 34th International Conference on Data Engineering (ICDE) (pp. 1739-1740). IEEE.
- Seijas, P. L., Thompson, S. J., & McAdams, D. (2016). Scripting smart contracts for distributed ledger technology. IACR Cryptology ePrint Archive, 2016, 1156.
- Trón, V., Fischer, A., Nagy, D. A., Felföldi, Z., & Johnson, N. (2016). Swap, Swear, and Swindle: Incentive System for Swarm.
- Wattenhofer, R. (2016). The science of the blockchain. CreateSpace Independent Publishing Platform.
- Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151(2014), 1-32. http://gavwood.com/paper.pdf
- Awesome Solidity. (n.d.). GitHub. <u>https://github.com/bkrem/awesome-solidity</u>
- <u>https://medium.com/nerd-for-tech/how-to-build-a-smart-contract-for-metaverse-3516bcc3d052</u>
- Moralis, 2022, How to build a metaverse game smart contract <u>https://moralis.io/metaverse-smart-contract-how-to-build-a-metaverse-game-smart-contract/</u>
- Metaverse and Smart contracts, 2022, https://www.oodlestechnologies.com/blogs/metaverse-and-smart-contracts:-a-brief-review/
- Smart Contracts in Metaverse: A Closer Look, 2022, <u>https://www.codeglo.com/blog/smart-contracts-in-metaverse-a-closer-look/</u>