

Course Syllabus

Course Code	Course Title	ECTS Credits
META-514DL	Extended Reality	10
Prerequisites	Department	Semester
None	Digital Innovation	Fall/Spring
Type of Course	Field	Language of Instruction
Required	Metaverse	English
Level of Course	Lecturer	Year of Study
2 nd Cycle	Dr. Chris Christou	1 st
Mode of Delivery	Work Placement	Corequisites
Distance Learning	N/A	N/A

Course Objectives:

The main objectives of the course are to:

- 1. Explain and analyse Virtual Reality and Augmented Reality.
- 2. Discuss the historical foundations of AR and VR.
- 3. Explore at a principal level how the XR technologies work.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Identify the technologies which contribute to XR.
- 2. Appreciate the XR application development process.
- 3. Identify the application areas of AR and VR
- 4. Discuss the future trends of XR

Course Content:

Session 1: Introduction to Extended Reality (XR)

- Defining Augmented Reality (AR) and Virtual Reality (VR)
- Defining XR
- A look at other types of XR with examples
 - Mixed Reality
 - o Augmented Virtuality

- Extended Reality and the Metaverse
 - Independent Worlds
 - Layered Worlds
 - Spatial computing

Session 2: Fooling the senses

- Visual perception
 - The eye
 - The brain
- Auditory perception
- Touch perception
- Computer Graphics
- Realism and Virtual Reality
- Presence and Immersion
- Spatial Audio
- Haptic devices The Phantom Haptic Interface

Session 3: XR evolution

- Trompe-L'œil
- Robert Mitchell's Panorama
- Stereographs and Stereoscopes
- Analogue Simulators
- Sensorama
- Sword of Damocles
- Tom Caudell AR
- CAVE
- Google Glass
- Oculus Rift

Session 4: Current state of VR

- Form Factor Convergence
- A generic HMD
- Desktop and Standalone
- Google Cardboard
- Meta Quest and HTC Vive
- Roomscale v Stationary VR experience
- Inside-Out tracking
- Haptic feedback
- Audio
- Controllers
 - Head Tracking
 - Body tracking
 - Hand tracking LEAP

• Hand tracking (Quest)

Session 5: Current state of AR

- Spatial Computing
- Available form factors
 - Video pass-through
 - o Optical pass-through
 - Spatial computing glasses (SCGs)
- Controllers and Interaction
 - Head tracking
 - Hand Tracking
- Cost and availability
- Tracking
- Field of view

Session 6: XR - Human Factors

- Motion sickness
- Cyber sickness
- Vergence-Accommodation Conflict
 - o VR
 - Head-mounted AR
- Latency
- Screen-door effect
- The Immersive Society
 - Cyber bully and XR
 - The interpersonal distance experiments

Session 7: Creating Content for XR

- Computer Graphics Modelling
 - o 3DS Max
 - o Blender
 - Google Sketchup
- Cinematic VR
- Snapchat
- Unity3D and Unreal Engine
- 360° cameras
- 180° and 360° video on youtube

Session 8: Creating XR

- A typical developer team
- The Unity 3D environment
- The Unreal Engine environment
- Cloud computing

- XR Software development libraries
 - OpenXR
 - o ARKit
 - o ARCore
 - ARFoundation

Session 9: Exploring VR use cases

- Art
 - o (Meta) Reality Labs
 - Cinematic VR
 - o Tilt Brush
- Education
- Entertainment and Gaming
- Healthcare and Rehabilitation

Session 10: Exploring AR use cases

- Art
- Education
- Industry & Commerce
- Entertainment

Session 11: Design, Development and Validation of AR software

• Design principles and best practices for AR app development

Session 12: Future of XR

- Discuss the future of VR
- Discuss the future of AR
- Discuss developments of an open Metaverse and the role of XR.
- Discuss new XR influencing technologies e.g. multi focal displays, photogrammetry, and light fields.

Learning Activities and Teaching Methods:

- Faculty Lectures
- Guest-Lectures Seminars
- Directed and Background Reading
- Case Study Analysis
- Academic Paper Discussion
- Simulations
- Student-led Presentations
- In-Class Exercises

Assessment Methods:

- Interactive activities and classroom participation
- Assignments
- Final exams

Assessment Methods in alignment with Intended Learning Outcomes:

		Intended Learning Outcomes to be assessed			
Assessment Method	Weighting	LO1	LO2	LO3	LO4
Interactive activities	30%	\checkmark	\checkmark	\checkmark	\checkmark
Assignments	10%	\checkmark	\checkmark	\checkmark	\checkmark
Exams	60%	\checkmark	\checkmark	\checkmark	\checkmark

Student Study Effort Expected:

Student Study Effort Expected	Hours
Lectures	12h
Assignments	30h
Interactive activities and forum participation	65h
Reading and research	140h
Exam	3h
Total	250h

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
The Metaverse: A Professional Guide: An expert's guide to virtual reality (VR), augmented reality (AR), and immersive technologies.	Fiske Tom	Independent publication	2022	979-8403364522.

Recommended Textbooks / Readings:

• Christou C.G. and Parker A.J. (1995). Visual realism and virtual reality: a psychological perspective. In K. Carr & R. England (Eds.), Simulated and Virtual Realities: Elements of Perception. London: Taylor & Francis.

- Glover, J., & Linowes, J. (2019). Complete Virtual Reality and Augmented Reality Development with Unity: Leverage the power of Unity and become a pro at creating mixed reality applications. Packt Publishing Ltd.
- Greengard, S. (2019). Virtual reality. Cambridge, MA: MIT Press.
- Pangilinan, E., Lukas, S., & Mohan, V. (2019). Creating augmented and virtual realities: theory and practice for next-generation spatial computing. Sebastopol, CA: O'Reilly Media, Inc.
- Rauschnabel, P. A., Felix, R., Hinsch, C., Shahab, H., & Alt, F. (2022). What is XR? Towards a framework for Augmented and Virtual Reality. Computers in Human Behavior, 130, 107289.
- Schmalstieg, D., & Hollerer, T. (2016). Augmented reality: principles and practice. Upper Saddle River, NJ: Addison-Wesley Professional.
- Timothy Jung, M. Claudia tom Dieck. (2018). Augmented Reality and Virtual Reality Empowering Human, Place and Business. Springer.