Course Code:
MENG-464

Course Title:
Air-Conditioning and Refrigeration

ECTS Credits:
6

Department:
Engineering

Semester:
Fall, Spring

Prerequisites:
MENG-262

Type of Course:
Elective

Field:
Engineering

Language of Instruction:
English

Level of Course:
1st Cycle

Year of Study:
3rd or 4th

Lecturer(s):
Dr Andreas Chrysanthou

Mode of Delivery:
Face-to-face

Work Placement:
N/A

Co-requisites:
None

Objectives of the Course:

The main objectives of the course are to:

- Provide students the fundamental principles and types of air-conditioning and refrigeration
- Teach students the most important refrigeration cycles and evaluate their performance based on scientific methods
- Introduce students to the different types of refrigerant providing classification based on their properties, applications and impact on the environment
- Explain the different processes of air conditioning based on psychrometric charts along with load calculations for different applications
- Provide students with the tools and knowledge to design air conditioning and refrigeration systems based on certain constraints and thermal comfort
- Introduce students to water and heating systems, absorption systems, thermal storage systems, and dehumidification

Learning Outcomes:

Upon completion of the course students are expected to:

- Demonstrate knowledge of the main principles, types and applications of air conditioning and refrigeration systems
- Explain the most well-known refrigeration cycles and evaluate their performance
- Identify different types of refrigerants and provide comparative studies based on their properties, potential application, and environmental impact
- Calculate the cooling capacity and the coefficient of performance for refrigeration systems
- Calculate the cooling load for air conditioning systems in different applications
- Design and analyse the performance of an air conditioning and refrigeration system including the air distribution system
Course Contents:

- Introduction to air-conditioning and air-conditioning systems
- Psychrometrics (moist air, humidity and enthalpy, moist volume, density, dew point of air, psychrometric charts, etc.)
- Air-conditioning processes, space conditioning, air-conditioning cycles, operating modes, sensible heating and cooling processes, humidifying and dehumidifying processes.
- Refrigeration system components and evaporative coolers (types and construction of compressors, condensers, expansion devices, evaporators, piping, thermal insulation)
- Classification of refrigeration systems
- Refrigeration cycles, refrigerants and their properties, cooling mediums, absorbents, refrigeration systems, refrigeration cycles, ideal single-stage vapour compression cycle, sub-cooling and superheating, refrigeration cycle of two-stage compound systems with a flush cooler, coefficient of performance of refrigeration cycle.
- Outdoor design conditions, indoor design criteria, thermal comfort, indoor air quality, outdoor air ventilation requirements.
- Load calculations (space loads, cooling load, conduction and internal heat gains, moisture transfer, etc.)
- Water and heating systems
- Absorption systems, absorption cycles and heat pumps
- Thermal storage systems
- Dehumidification
- Air distribution systems (air handling unit, types of ducts, duct materials, air flow through duct, friction, etc.)
- Laboratory experiments that demonstrate knowledge and understanding of the main principles of air conditioning and refrigeration systems
 - Analyse and explain the types of vapour compression cycle with T-S and P-H diagrams.
 - Determine the coefficient of performance of cycle and the capacity of refrigeration unit.
 - Demonstrate the procedure for evacuation charging and recovery of system refrigerant and define the optimum operation parameters.
 - Analyse the different psychrometric properties of air conditioning using the psychrometric process chart.

Learning Activities and Teaching Methods:
Lectures, in-class exercises, examples, laboratory exercises

Assessment Methods:
Mid-term exams, final exam, laboratory reports
Required Textbooks/Reading:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Publisher</th>
<th>Year</th>
<th>ISBN</th>
</tr>
</thead>
</table>

Recommended Textbooks/Reading:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Publisher</th>
<th>Year</th>
<th>ISBN</th>
</tr>
</thead>
</table>