Course Code	Course Title	ECTS Credits
MATH-395	Complex Analysis	8
Department	Semester	Prerequisites
Computer Science	Fall, Spring	MATH-191
Type of Course	Field	Language of Instruction
Required	Mathematics	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	3 rd	Dr Marios A. Christou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Familiarize students with the complex plane and complex functions
- Introduce the basic theory of conformal mapping and its applications to engineering problems.
- Cover the basic theory of complex integration in depth
- Provide students with knowledge of the theory of power series (Taylor and Laurent Series) and discuss its applications to residue integration and various problems in the field of Engineering
- Discuss Fourier series and integrals in detail
- Cover the Fourier transform and its inverse in depth.
- Familiarize students with the theory of Laplace and z-tranforms

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Perform operations with complex numbers
- 2. Explain the concepts of differentiability and analyticity of complex functions and apply them to problems from complex function theory.
- 3. Apply the theory of conformal mapping to solve problems from various fields of engineering.
- 4. Compute complex integrals
- 5. Utilize the theory of complex integration and power series to solve problems from the area of residue calculus.
- 6. Apply Fourier series and transforms to differential and integral equations.
- 7. Implement Laplace and Z-transforms to solve problems in signal and systems theory

Course Contents:

- 1. The Complex number plane
 - o Complex numbers and the complex plane

- o Stereographic projection and the extended complex plane
- 2. Functions of a Complex variable
 - o Functions and Limits
 - o Differentiability, Analyticity and the Cauchy-Riemann conditions
 - Linear Fractional Transformations
 - o Conformal mapping and its applications
- 3. Integration in the Complex plane
 - o Line Integrals and the Definite Integral
 - o Cauchy's Theorem and its implications
 - o Cauchy formulas and the Maximum Modulus Principle
- 4. Power Series
 - o Theory of sequences and infinite series
 - o Power series and Laurent series
 - o Elements from analytic continuation theory
- 5. Residue Calculus
 - o The Residue theorem and evaluation of Real Integrals
 - The principle of the argument
 - Meromorphic and Entire functions
- 6. Fourier Series and Transforms
 - o Fourier Series and the Fourier Integral Theorem
 - o The Fourier Transform and its properties; Inverse Fourier Transforms
 - o Solution of Differential equations using Fourier theory
- 7. Laplace and Z-transforms
 - The Laplace transform and its properties
 - o Inversion of Laplace transforms
 - o The solution of Differential Equations using Laplace Transform
 - o Theory of Z-transform
 - o Solution of Difference equations using Z-transform

Learning Activities and Teaching Methods:

Lectures, Exercises, Assignments and Tests.

Assessment Methods:

2 Mid-Term exams and a Final Exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
E.Saff and A.	Fundamentals of	Prentice	2003	0139078746
Snider	Complex Analysis with	Hall		
	applications to			
	Engineering, Science			
	and Mathematics			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Churchill and	Complex Variables and	McGraw	2008	0073051942
Brown	Applications	Hill		
	8th Edition.			
Mersden and	Basic Complex	Freeman	1999	071672877X

Hoffman	Analysis, 3 rd Edition	Publications		
Erwin Kreyszig	Advanced Engineering Mathematics 9th Edition	John Wiley and Sons	2006	0470084847