

Course Syllabus

Course Code	Course Title	ECTS Credits	
MATH-196	Calculus II	6	
Prerequisites	Department	Semester	
MATH-195	Computer Science	Fall/Spring	
Type of Course	Field	Language of Instruction	
Required	Mathematics	English	
Level of Course	Lecturer	Year of Study	
1 st Cycle	Professor Nectarios Papanicolaou	1 st	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- Cover indeterminate forms of limits and L' Hospital's rule.
- Introduce students to inverse trigonometric functions.
- Provide students with a deep knowledge of integration techniques.
- Introduce students to sequences and discuss monotonicity tests.
- Cover all aspects of infinite series and convergence tests.
- Discuss Maclaurin and Taylor series.
- Discuss power series and absolute convergence in detail.
- Make students aware of the application of the definite integral in evaluating areas and volumes.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Evaluate limits using L' Hospital's Rule.
- 2. Calculate the derivatives and integrals of inverse trigonometric functions.
- 3. Apply various integration methods to compute definite and indefinite integrals.
- 4. Evaluate improper integrals.
- 5. Use appropriate techniques and theorems to investigate the convergence and monotonicity of a sequence.
- 6. Apply convergence tests to determine whether a series converges or diverges.
- 7. Compute and use Maclaurin and Taylor Approximations.
- 8. Find the radius and interval of convergence of a power series.
- 9. Calculate areas and volumes using integration.

Course Content:

- 1. L' Hospital's Rule, Indeterminate forms.
- 2. Derivatives and Integrals involving Inverse Trigonometric Functions.
- 3. Integration:
 - a. Review of basic Integration Formulae
 - b. Integration by parts
 - c. Trigonometric Integrals and Reduction Formulas
 - d. Trigonometric Substitution
 - e. Partial Fractions
 - f. Improper Integrals
- 4. Sequences
 - a. Convergence
 - b. Monotone sequences
- 5. Infinite series
 - a. Partial Sums
 - b. Geometric and Telescoping Series
 - c. Convergence Tests
 - d. Alternating Series
 - e. Absolute Convergence
 - f. Maclaurin and Taylor Series
 - g. Power Series
- 6. Applications of the Definite Integral
 - a. Area between two curves
 - b. Volumes by Slicing
- 7. Volumes using Cylindrical Shells

Learning Activities and Teaching Methods:

Lectures, Online Material, Assignments, In-class Exercises.

Assessment Methods:

Final Examination, Midterm Examinations, Class Participation, Assignments/Quizzes.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Calculus: Late Transcendentals	Howard Anton, Irl Bivens, Stephen Davis	Wiley (10 th Ed.)	2012	Print copy: 9781118092484 E-book: 9781118379318

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Calculus	James Stewart	Brooks/Cole (6 th Ed.)	2009	9780495383628