

University of Nicosia, Cyprus

Course Code	Course Title	ECTS Credits
MATH-193	Calculus for the Life	6
	Sciences II	
Department	Semester	Prerequisites
Computer Science	Fall, Spring	MATH-192
Type of Course	Field	Language of Instruction
Required	Mathematics	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	1^{st} or 2^{nd}	Dr Nectarios Papanicolaou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of this course are to:

- Provide students with a comprehensive and practical working knowledge of the basic theory of matrices and its application to biological problems
- Cover additional integration techniques (integration by parts, partial fractions)
- Introduce students to differential equations and initial value problems
- Provide students with the necessary techniques (integrating factor, separation of variables) to solve first-order equations
- Discuss the applications of differential equations in Biological models
- Introduce students to autonomous equations and stability theory. Discuss applications in population dynamics
- Cover in detail methods of solving second order equations with constant coefficients

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Carry out matrix operations and use matrix theory to solve linear systems of equations.
- 2. Compute the eigenvalues and eigenvectors of a matrix
- 3. Calculate the solution of linear second order difference equation
- 4. Apply linear systems theory in biological models
- 5. Apply integration techniques to evaluate definite and indefinite integrals
- 6. Solve and interpret differential equations.
- 7. Use differential equations to approximate changes of exponential and logarithmic functions in biological models of growth and decay.
- 8. Use elementary stability theory to analyze, compare and contrast mathematical models for some select biological and medical phenomena.

Course Contents:

- 1. Matrices
 - a. Matrix Operations
 - b. Solution of Linear Systems. Gauss-Jordan Elimination
 - c. The Inverse of a Matrix
 - d. Determinants
 - e. Eigenvalues and Eigenvectors
 - f. Difference Equations
- 2. Integration
 - a. Review of Integration Techniques
 - b. Integration by Parts
 - c. Integration Using Partial Fractions
- 3. First-Order Differential Equations
 - a. Introduction to Differential Equations and Initial Value Problems
 - b. First Order Linear Equations. The method of the Integrating Factor
 - c. Separation of Variables
 - d. Population Dynamics. Logistic Growth Models
 - e. Elements of Stability theory. Introduction to the Theory of Autonomous Systems
 - f. Calculus Applications in Biological Data Interpretation
- 4. Second Order Differential Equations
 - a. Homogeneous Equations with Constant Coefficients
 - b. Non-Homogeneous Equations. The method of Undetermined Coefficients
 - c. Differential equations and systems
- 5. Higher Order Linear Equations

Learning Activities and Teaching Methods:

Lectures, Homework

Assessment Methods:

Assignments, quizzes, two mid-term exams, and a final exam

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
M. L. Bittinger,	Calculus for the	Addison	2006	0321279352
N.Brand,	Life Sciences.	Wesley		
J.Quintanila				

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Howard Anton, Ir	Calculus: Late	Wiley	2009	0470183497
Irl Bivens, Stephe	Transcendentals			
Davis	Combined (or			
	Single Variable)			
	9th Edition			

William Boyce, Richard Di Prima	Elementary Differential Equations 9th Edition	Wiley	2009	047003940X
Frederick R. Adle	Modeling the Dynamics of Life: Calculus and Probability for Life Scientists 2^{nd} Edition	Brooks/Cole	2004	0534404863
Claudia				
Neuhauser	Calculus for biology and medicine 3 rd Edition	Prentice-Hall	2010	0321644689