

# **Course Syllabus**

| Course Code           | Course Title                                                            | ECTS Credits            |  |
|-----------------------|-------------------------------------------------------------------------|-------------------------|--|
| MATH-108DL            | Finite Maths and Applied Calculus                                       | 6                       |  |
| Prerequisites         | Department                                                              | Semester                |  |
| MATH-105DL            | Computer Science                                                        | Fall/Spring             |  |
| Type of Course        | Field                                                                   | Language of Instruction |  |
| Required              | Accounting, Marketing, MIS, Business<br>Adm., Economics, Sports Science | English                 |  |
| Level of Course       | Lecturer(s)                                                             | Year of Study           |  |
| 1 <sup>st</sup> Cycle | Dr Zacharias Kountouriotis                                              | 1 <sup>st</sup>         |  |
| Mode of Delivery      | Work Placement                                                          | Corequisites            |  |
| Distance Learning     | N/A                                                                     | None                    |  |

# Course Objectives:

The main objectives of the course are to:

- Introduce students to linear models and provide them with the necessary knowledge to set them up using realistic data.
- Discuss matrix operations and Gauss-Jordan elimination in detail.
- Cover linear systems of m equations with n unknowns.
- Introduce students to nonlinear problems.
- Discuss the derivative and its applications in detail.
- Introduce students to the integral and its applications.

#### Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Implement linear model theory to set up and solve problems related to their majors.
- 2. Use Gauss-Jordan elimination to solve linear systems.
- 3. Compute derivatives and basic integrals.
- 4. Use derivatives and integrals to solve applied problems.



# **Course Content:**

- Chapter 1: Linear Functions and Applications
- Chapter 2: Systems of Linear Equations, Matrices and Applications
- Chapter 3: Inequalities, Systems of Inequalities and Applications
- Chapter 4: Nonlinear Functions and Applications
- Chapter 5: The Derivative and its Applications
- Chapter 6: The Integral and its Applications

## Learning Activities and Teaching Methods:

Lectures, Handouts and Assignments.

#### Assessment Methods:

Homework Assignments, Final Examination

#### **Required Textbooks / Readings:**

| Title                                              | Author(s)  | Publisher | Year | ISBN |
|----------------------------------------------------|------------|-----------|------|------|
| Finite Mathematics an<br>Applied Calculus<br>Notes | Stavros P. |           |      |      |

## **Recommended Textbooks / Readings:**

| Title                                       | Author(s)                             | Publisher | Year | ISBN             |
|---------------------------------------------|---------------------------------------|-----------|------|------------------|
| Calculus With Applications                  | Lax, Peter D.,<br>Terrell, Maria Shea | Springer  | 2014 | 978-1-4614-7946  |
| A Beginner's Guide to Finite<br>Mathematics | Wallis, W.D                           | Springer  | 2012 | 978-0-8176-831-9 |