

Course Syllabus

Course Code	Course Title	ECTS Credits	
ECE-350	Principles of Communications	6	
Prerequisites	Department	Semester	
ECE-331	Engineering	Fall, Spring	
Type of Course	Field	Language of Instruction	
Required	Engineering	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr Antonis Hadjiantonis	3 rd	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- introduce the need of electrical signal communication
- present energy and power signals and signal distortion
- introduce and analyze various analog and digital modulation techniques
- prove the sampling theorem and use it in digital signal communication
- explore various digital transmission concepts

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. identify the main points of a communication link
- 2. examine signals in both time- and frequency domain
- 3. interpret how signals are transmitted through linear channels
- 4. illustrate the need for modulation in communication with electrical signals
- 5. solve basic analog and digital modulation problems
- 6. design fundamental analog and digital communication link parameters
- 7. apply the sampling theorem in analog to digital conversions
- 8. produce communication-related computer projects

Course Content:

- 1. Introduction to the communication system and its basic building blocks.
- 2. Analysis and transmission of signals: Review of Fourier series, Fourier transform and properties
- 3. Signal transmission: distortion, bandwidth versus rate of transmission, energy spectral density, power spectral density.
- 4. Introduction to analog modulation techniques: DSB-AM, SSB-AM, General Angle Modulation, FM and PM.
- 5. Sampling theorem. Quantization process, Quantization noise. Digital communication system, pulse amplitude modulation (PAM), PCM and Delta modulation, digital multiplexing
- 6. Line coding, pulse shaping, M-ary communication.

Learning Activities and Teaching Methods:

Lectures

Assessment Methods:

Homework, Projects, Mid-Term, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Modern Digital and Analog Communication Systems	B.P. Lathi	Oxford University Press (4E)	2009	978- 0195331455

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
An Introduction to Signal & Noise in Electrical Communication	A. Bruce Carlson, Paul B. Crilly & Janet C. Rutledge	McGraw Hill	2002	0-07-011127-8