

Course Syllabus

Course Code	Course Title	ECTS Credits
COMP-548DL	Big Data Management and Processing	10
Prerequisites	Department	Semester
COMP-543DL	Computer Science	Fall
Type of Course	Field	Language of Instruction
Elective	Data Science	English
Level of Course	Lecturer(s)	Year of Study
2 nd Cycle	Dr. D. Trihinas	1 st
Mode of Delivery	Work Placement	Corequisites
Distance Learning	N/A	None

Course Objectives:

The main objectives of the course are to:

- Provide a comprehensive overview of the data evolution landscape and why traditional data solutions are inadequate for the specific requirements of modern scalable, reliable and fault-tolerant applications.
- Introduce the principles, concepts and modelling abstractions for Big Data and data-intensive computing at scale.
- Present the fundamental principles for popular Big Data programming models (e.g., MapReduce, Dataflow, etc.) and discuss how performance and robustness are significantly improved compared to traditional models.
- Provide a comprehensive overview on distributed storage models for big data and elaborate on the challenges that arise for both data availability and consistency.
- Introduce advanced programming design patterns used extensively for processing Big Data (e.g., counting, sorting, relational algebra, matrix multiplication, etc.).
- Provide a comprehensive overview of how to manage and process graph data that is too large to fit in a single host.
- Describe alternative programming models and algorithms for data that must be processed online and also features low-latency requirements (e.g., streaming data).
- Demonstrate basic techniques towards architecting big-data solutions.
- Introduce various popular and open-source tools for big-data storage, processing and analytic insight extraction.

Learning Outcomes:

After completion of the course students are expected to be able to:

- Describe the multiple dimensions and challenges involved in storing, processing and modelling Big Data.
- Comprehend the contexts in which Big Data principles models are applied, while also recognizing potential implications and trade-offs depending on the context.
- Conceptually understand the capabilities and pitfalls of Big Data storage models towards relational storage models when applied on structured and unstructured data.
- Evaluate data analysis problems to determine whether and how Big Data algorithms, programming models and techniques can be applied.
- Understand the underlying principles and concepts of key Big Data programming models (e.g., MapReduce, Dataflow, etc.) and present the ability to design applications adopting these principles.
- Acknowledge how to model, adapt and extend data analysis techniques to process streaming data with low-latency requirements.
- Realize how different tools fit in the frame of Big Data analytics stacks.
- Demonstrate the ability to use open-source technologies to design components of Big Data solutions for data storage, processing and analytics extraction.

Course Content:

- 1. Scalable Data-Intensive Computing
 - a. The Big Data Dimensions (3V's, 5V's)
 - b. Thinking at Scale
 - c. Parallel and Distributed Computing for Data-Intensive Applications
- 2. Big Data Advanced Models I
 - a. Data Replication
 - b. Data Rebalancing
- 3. Big Data Advanced Models II
 - a. Data Partitioning
 - b. Schema Sharding
 - c. Secondary Indexes
- 4. Distributed Databases
 - a. Relational vs Non-Relational Data
 - b. Query Routing Data Lookups
 - c. Distributed Indexing
 - d. NoSQL Databases (e.g., column stores, document stores)
- 5. Failures and Errors in Big Data Systems
 - a. Network Interruptions
 - b. Transactional Consistency

- c. Conflict Resolution
- d. ACID properties and the CAP Theorem
- e. NewSQL Models and Databases
- 6. The MapReduce Programming Model
 - a. Data Parallel Problems
 - b. The MapReduce Programming Model
 - c. MapReduce Algorithmic Design Patterns
- 7. Batch Processing Systems
 - a. Data in Batches
 - b. Distributed Processing Engines
 - c. MapReduce as an Execution Framework (e.g, Hadoop)
 - d. Local Aggregation and Latency Improvements
- 8. Graph Management and Processing
 - a. Graph and Network Datasets
 - b. Graph Storage and Data Lookups
 - c. Iterative MapReduce Model
 - d. Graph Processing
- 9. Data Warehousing
 - a. Data Warehousing and Big Data
 - b. Structuring Unstructured Data
 - c. ETL Operations
 - d. Relational Queries over Distributed Processing Engines
- 10. The Dataflow Programming Model
 - a. MapReduce Limitations
 - b. The Dataflow Programming Model
 - c. Dataflow Algorithmic Design Patterns
- 11. Data Streams
 - a. The Data Stream Model
 - b. Stream vs Batch Data
 - c. Scalable Streaming Algorithms
- 12. Stream Processing Systems
 - a. Resilient Distributed Datasets
 - b. Idempotence and Microbatching
 - c. Dataflow as an Execution Framework (e.g., Spark, Flink)

Learning Activities and Teaching Methods:

Lectures, Exercises, Software Tool Tutorials, Case-Study Presentations, Discussions.

Assessment Methods:

Exam, Homework, Lab Reports, Semester Project.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Designing Data- Intensive Applications	Martin Kleppmann	O'Reilly	2017	978-1-449- 37332-0
Data-Intensive Text Processing with MapReduce*	Jimmy Lin and Chris Dyer	Morgan and Claypool	2010	978-1-608- 45342-9
Mining Massive Datasets (2 nd edition) **	Jure Leskovec, Anand Rajaraman and Jeff Ullman	Cambridge University Press	2014	978-1-107- 07723-2

^{*} Made freely available online by the authors: https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Hadoop: The Definitive Guide (4 th edition)	Tom White	O'Reilly	2015	978-1-491- 90168-7
Big Data Fundamentals	Thomas Erl and Wajid Khattak and and Paul Buhler	Prentice Hall	2016	978-0-134- 29107-9
Big Data	Nathan Marz and James Warren	Manning	2015	978-1-617- 29034-3
Spark: The Definitive Guide	Matei Zaharia and Bill Chambers	O'Reilly	2018	978-1-49191- 221-8

^{**} Made freely available online by the authors: http://www.mmds.org/#book

Big Data: Principles and Paradigms	Rajkumar Buyya and Rodrigo N. Calheiros and Amir Vahid Dastjerdi	Morgan Kaufmann	2016	978-0-128- 05394-2
------------------------------------	--	--------------------	------	-----------------------