

Course Syllabus

Course Code	Course Title	ECTS Credits	
COMP-542DL	Data Programming	10	
Prerequisites	Department	Semester	
None	Computer Science	Fall	
Type of Course	Field	Language of Instruction	
Required	Data Science	English	
Level of Course	Lecturer(s)	Year of Study	
2 nd Cycle	Dr. Ioannis Partalas	1 st	
Mode of Delivery	Work Placement	Corequisites	
Distance Learning	N/A	None	

Course Objectives:

The main objectives of the course are to:

- Present fundamental programming concepts, data abstractions and computing techniques for Data Science.
- Introduce a problem-solving framework for "thinking with data".
- Present intuitive data types and effective data structuring techniques to speed data curation.
- Introduce programming paradigms suitable for Data Science projects and in which contexts are these paradigms embraced.
- Provide the essential programming skills for Data Science using Python.
- Introduce the basics of the Python programming language.
- Introduce the different tools for data harvesting and manipulation.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Explain the basic concepts involved in computational thinking towards solving dataoriented problems.
- 2. Distinguish between suitable data types and structuring techniques for different data programming challenges.
- 3. Develop relatively well-structured and maintainable programs in Python.
- 4. Distinguish between suitable programming paradigms and evaluate strengths and

- weaknesses of each paradigm depending on the context of different Data Science tasks.
- 5. Apply in practice algorithmic methods for data harvesting and curation.
- 6. Use different core libraries of Python.

Course Content:

- 1. Introduction to Data Programming
 - a. The basic Concepts of Data Programming
 - b. Data Programming Lifecycle
 - c. The toolsets of a Data Scientist
- 2. Introduction to Data Programming II
 - a. Interacting with Python
 - b. Python Syntax
 - c. Variables Data Types
 - d. Control flow
 - e. Conditional expressions
- 3. Introduction to Data Programming III
 - a. Collections in Python
 - b. Linear data Structures
 - c. Associative Data Structures
- 4. Classes and Objects
 - a. Classes and Objects
 - b. Inheritance
 - c. Encapsulation
 - d. Data Abstractions
- 5. Interactive Programming
 - a. Interactive Programming
 - b. Creating, Publishing and Sharing Notebooks
- 6. Introduction to Programming with Arrays and Matrices I
 - a. Array-Oriented Programming
 - b. Numerical Arrays
 - c. Indexes and Arrays
 - d. Multi-Dimensional Arrays
 - e. Reshaping, Joining and Splitting Arrays
- 7. Introduction to Programming with Arrays and Matrices II
 - a. Advanced Array Operators
 - b. Non-Homogeneous Arrays
 - c. Sorting Arrays
- 8. Handling Data Sources
 - a. Strings and Encoding Schemes
 - b. Regular Expressions
 - c. File I/O
 - d. The CSV and JSON formats
 - e. Manipulating Textual Data
- 9. Data Manipulation and DataFrames I
 - a. Dataframe Objects

- b. Hierarchical Indexes
- c. Data Grouping, Aggregation and Summarization
- 10. Data Manipulation and DataFrames II
 - a. Missing Values in DataFrames
 - b. DataFrame Filling Strategies
- 11. Functional Programming
- 12. From Data Programming to Data Mining

Learning Activities and Teaching Methods:

Lectures, Exercises, Software Tool Tutorials, Case-Study Presentations, Discussions.

Assessment Methods:

Homework, Projects, Final Assessment*

* The Final Assessment can be either a Final Exam or Final Assignment(s) with Viva

Required Textbooks / Readings:

Python Data Science	Jake VanderPlas	O'Reilly Media	2016	978-1-491- 91205-8
Handbook				

Recommended Textbooks / Readings:

Think Python* (2 nd edition)	Allen B. Downey	Green Tree Press	2015	978-1-491- 93936-9
Think Like a Data Scientist	Brian Godsey	Manning	2017	978-1-633- 43027-3