

Course Syllabus

Course Code	Course Title	ECTS Credits
COMP-537DL	Digital Currencies	10
Prerequisites	Department	Semester
COMP-514DL, COMP-515DL	Computer Science	Spring
Type of Course	Field	Language of Instruction
Required for Blockchain Technologies concentration	Computer Science	English
Level of Course	Lecturer(s)	Year of Study
2 nd Cycle	Dr Harald Gjermundrød Dr Dmitry Apraksin	1 st
Mode of Delivery	Work Placement	Corequisites
Distance Learning	N/A	None

Course Objectives:

The main objective of this course are to:

- provide a deep understanding of decentralized digital currencies and the underlying blockchain technology
- cover in detail the underlying cryptographic technologies which are used in order to devise a blockchain framework
- provide deep knowledge of the architecture of the bitcoin system, including the data structure used for the bitcoin blockchain
- provide deep knowledge of mining in blockchain infrastructures by comparing the different roles, contributions, and motivations of the entities involved in maintaining the consistency of the decentralized ledger.
- expose the students to the Bitcoin Script language including developing different type of scripts using the provided API.
- compare and contrast the different wallets types that are available for the bitcoin system with respect to security, privacy, and convenience to the user.
- make students aware of various deployment scalability issues related to the bitcoin system, and different proposed approaches and experiments of haw to address them.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. understand the technology components of blockchain-based digital currencies, the process of currency issuance, proof-of-work, consensus and distributed ledger
- understand the underlying cryptographic technology utilized in blockchain-based digital currencies
- 3. explain in detail the architecture and the data structure of the bitcoin digital currency
- 4. critically compare and evaluate different approaches/implementations of digital currencies
- 5. critically assess the importance of the miners in blockchain deployments and their motives
- 6. compare and contrast the different categories of miners
- 7. develop scripts using the Bitcoin Script language and have a deep understanding of the provided API
- 8. demonstrate an understanding of the different digital currency wallet types and be able to conduct transactions using different types of wallets
- 9. be aware of problems and challenges in blockchain deployments, especially with relation to scalability issues, and have a deep understanding of the different tradeoffs that proposed solutions entails.

Course Content:

- 1. Introduction to digital currencies and blockchain technology
 - a) Basic description of digital currency and blockchain technology
 - b) History of digital currency
 - c) Transactions in digital currencies
- 2. Cryptographic technologies used in digital currencies systems
 - a) Hashing algorithms
 - b) Digital signatures
 - c) Asymmetric cryptographic techniques
- 3. Bitcoin network architecture
 - a) Distributed consensus
 - b) Proof-of-Work (PoW)
 - c) Data structure of the bitcoin blockchain
 - d) Operation on the bitcoin blockchain
- 4. Blockchain verification and consensus, i.e. mining
 - a) Role of the different nodes in a blockchain deployment
 - b) Full nodes vs. SPV (Simplified Payment Verification) nodes
 - c) Mining economics
- 5. The Bitcoin Script language
 - a) Introduction to the Bitcoin Script language
 - b) Script writing and execution
- 6. Bitcoin wallets
 - a) Different types of wallets
 - b) Security implications of the different type of wallets

- 7. Blockchain deployment scalability issues
 - a) Mining pools
 - b) Centralization
 - c) Types of attacks
 - d) Bitcoin Improvement Proposal (BIP)
 - e) Segregated Witness Benefits (SegWit)

Learning Activities and Teaching Methods:

Lectures, Practical Exercises, and Projects.

Assessment Methods:

Projects, Exercises, Quizzes, Final Exam.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Mastering Bitcoin	Andreas Antonopoulos	O'Reilly Publishing	2014	978-1-4493-7404-4
Bitcoin: A Peer- to-Peer Electronic Cash System	Satoshi Nakamoto	Online	2009	https://bitcoin.org/bitcoin.pdf

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction	A. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder	Princeton University Press	2016	978- 0691171692

The Science of the Blockchain	Roger Wattenhofer	CreateSpace Independent Publishing Platform	2016	978- 1522751830
-------------------------------	-------------------	--	------	--------------------

Other resources:

- 1. Bitcoin Protocol Specifications (https://en.bitcoin.it/wiki/Protocol specification)
- 2. Bitcoin transaction Scripting (https://en.bitcoin.it/wiki/Script)
- 3. Majority is not Enough: Bitcoin Mining is Vulnerable (http://arxiv.org/abs/1311.0243)
- 4. Two Bitcoins at the Price of One? Double-Spending Attacks on Fast Payments in Bitcoin (http://eprint.iacr.org/2012/248.pdf)