

Course Syllabus

Course Code	Course Title	ECTS Credits
COMP-417	Parallel and Distributed Computing	6
Prerequisites	Department	Semester
COMP-212, COMP-354	Computer Science	Fall
Type of Course	Field	Language of Instruction
Required	Computer Science	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr Harald Gjermundrød	3 rd or 4 th
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- introduce models, mechanisms, and techniques of parallel and distributed software development
- understand when concurrent programming techniques are appropriate to use and the benefits and risks involved with choosing such an approach
- thoroughly discuss concurrent programming paradigms or patterns like threads, safety, liveliness, state guarding, atomicity, and locking
- cover in detail object visibility and immutability as well as thread safety and confinement
- explain in detail how to go from requirements to model to implementation of parallel and distributed applications
- compare and contrast different message passing paradigms
- cover in detail how to model and develop dynamic systems
- expose the students to development tools/environments/frameworks to develop parallel and distributed systems.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. model, analyze, develop, and verify parallel and distributed systems
- 2. analyze problems and apply applicable parallel and distributed solutions when developing software

- 3. correctly apply concurrent concepts like threads, state guarding, atomicity, and locking for developing parallel applications
- 4. apply techniques for verifying liveness and safety properties in parallel applications
- 5. compare and contrast the different message passing paradigms that can be used in a parallel application
- 6. demonstrate how to go from system requirements to a system model, which then is implemented as a software system for real world problems
- 7. apply techniques to developing dynamic systems
- 8. develop (write/debug/correct) parallel applications that satisfy safety and liveness properties in various programming languages.

Course Content:

- 1. Introduction Parallel and Distributed Computing
 - a) Modeling computing systems
 - b) Shared memory computing systems
 - c) Distributed computing systems
- 2. Concurrent Execution
 - a) Modeling concurrency
 - b) Processes and threads
 - c) Multi-threaded program development
- 3. Shared Objects and Mutual Exclusion
 - a) Interference
 - b) Modeling mutual exclusion
 - c) Programming mechanisms for mutual exclusion
- 4. Process Synchronization
 - a) Condition synchronization
 - b) Locking mechanism like semaphores, monitors
 - c) Nested locking issues
 - d) Deadlock examples and analysis
- 5. Liveness and Safety Properties
 - a) Modeling liveness and safety
 - b) Starvation vs. deadlock

- 6. Model-based Design
 - a) Requirements to models
 - b) Models to implementation
- 7. Dynamic Systems
 - a) Fair allocation
 - b) Bounded overtaking
 - c) Master-slave pattern
- 8. Message Passing
 - a) Synchronous message passing
 - b) Asynchronous message passing
 - c) Rendezvous
 - d) Client-server model

Learning Activities and Teaching Methods:

Lectures, Practical Exercises, Projects, and Assignments.

Assessment Methods:

Final Exam, Midterm Exam, Project, and Quizzes

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Concurrency: State Models and Java Programs, 2 nd Edition	Jeff Magee, Jeff Kramer	Wiley	2006	978- 0470093559
Topics in Parallel and Distributed Computing	S. Prasad, A. Gupta, A. Rosenberg, A. Sussman, C. Weems	Elsevier	2015	978- 0128039380

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Principles of Concurrent and Distributed Programming	M. Ben-Ari	Addison- Wesley	2006	978- 0321312839
Java Concurrency in Practice	B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, D. Lea	Addison-Wesley Professional	2006	978- 0321349606