

Course Syllabus

Course Code	Course Title	ECTS Credits	
COMP-244	Machine Learning and Data Mining I	6	
Prerequisites	Department	Semester	
COMP-240 COMP-212	Computer Science	Spring	
Type of Course	Field	Language of Instruction	
Core	Data Science	English	
Level of Course	Lecturer	Year of Study	
1 st Cycle	Prof Ioannis Katakis	2 nd	
Mode of Delivery	Work Placement	Corequisites	
Face to Face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- Develop a solid understanding of the fundamental concepts and scope of Data Mining.
- Analyse when and how Data Mining tools can be effectively applied to solve practical problems.
- Apply appropriate data pre-processing techniques to prepare data for mining tasks.
- Examine and compare key classification techniques, including decision trees, Bayesian classifiers, support vector machines, lazy classifiers, and neural networks.
- Interpret and assess the performance of classification models using established evaluation metrics.
- Gain practical experience in implementing ensemble learning methods to address specific data analysis challenges.
- Identify and discuss the key challenges associated with stream data classification, and evaluate potential solutions.

Learning Outcomes:

After completing the course, students are expected to be able to:

- 1. Analyse data-related problems and formulate abstract, structured solutions.
- 2. Apply fundamental data mining concepts and problem-solving techniques in practical contexts.
- 3. Pre-process and transform data in preparation for analysis.
- 4. Apply appropriate statistical methods to extract insights from data.

- 5. Implement and interpret Decision Trees for data analysis tasks.
- 6. Identify the issue of overfitting in predictive models and propose suitable mitigation strategies.
- 7. Apply and evaluate a range of classification algorithms (including decision trees, naïve Bayes, support vector machines, neural networks, and k-nearest neighbours), comparing their performance across multiple dimensions such as training time, testing time, and predictive accuracy.
- 8. Critically assess the strengths and limitations of various machine learning classifiers.
- 9. Determine when ensemble learning methods can improve predictive performance and justify their use.
- 10. Analyse the specific challenges associated with stream data classification and evaluate potential approaches.

Course Content:

- 1. Introduction to Data Mining
 - a. What is Data Mining?
 - b. What tasks can Data Mining accomplish?
- 2. Data preprocessing
 - a. Data cleaning
 - b. Handling missing Data
 - c. Data transformation
- 3. Classification Basic Concepts, Training, Testing, Models
- 4. Decision Trees and the ID3 Classifier
 - a. Basic Principles
 - b. Splitting Criteria Information Gain, Entropy
- 5. Bayesian Classifiers
 - a. The Bayes theorem
 - b. The Naïve Bayes Classifier
- 6. Support Vector Machines
 - a. Support Vectors
 - b. Solving the optimization problem
 - c. Special cases (data that are not linearly separable, slack variables)
- 7. Lazy Learners
 - a. The k-Nearest Neighbor Classifier
- 8. Artificial Neural Networks
 - a. General Principles and the relation with Biological Neural Networks
 - b. Neurons, Hidden Layers, Activation Functions
 - c. The back-propagation algorithm
 - d. Applications of Neural Networks
- 9. Model Evaluation, and Model Comparison
 - a. Evaluation Metrics, Area Under the ROC Curve, Cross Validation

- b. Model Comparison and Tests of Significance
- c. Unbalanced datasets
- 10. Ensemble Methods Multiple Classifier Systems
 - a. Boosting
 - b. Bagging and Random Forests
 - c. Stacking
- 11. Stream Data Classification
 - a. Incremental and Batch Learning
 - b. Concept drift
 - c. Algorithms for data stream classification
- 12. Prediction Methods
 - a. Regression & Forecasting
 - b. Time series classification

Learning Activities and Teaching Methods:

Lectures, Demonstration of Data Mining Tools, Assignments, Projects.

Assessment Methods:

Assignments

Midterm

Project (Machine Learning Challenge)

Final Examination

Participation

Required Textbooks / Readings:

Title	Authors	Publisher	Year	ISBN
Introduction to Data Mining, 2 nd Edition	Tan, Steinbach, Kumar	Pearson	2019	
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition	Aurélien Géron	O'Reilly	2019	

Recommended Textbooks / Readings:

Title	Authors	Publisher	Year	ISBN
Data Mining: Concepts and Techniques, Third Edition	Han, Kamber, Pei	Morgan Kaufmann	2011	9380931913
Data Mining: Practical Machine Learning Tools and Techniques	Witten, Frank, Hall	Morgan Kaufmann	2011	0123748569