

Course Syllabus

Course Code	Course Title	ECTS Credits
CHEM-106	General Chemistry	8
Prerequisites	Department	Semester
None	Life & Health Sciences	Fall, Spring
Type of Course	Field	Language of Instruction
Required	Chemistry	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr. Stavroula Y. Christou	1 st Year
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	N/A

Course Objectives:

The main objectives of the course are to:

- Provide engineering students with an introduction to the basic principles of general, physical, and organic chemistry.
- Assist in the development of strong problem-solving skills.
- Help cultivate critical thinking in the approach to learning.
- Help in the acquisition of sound hands-on practical skills in the chemistry lab.

Learning Outcomes:

After completion of the course students are expected to be able to:

- Use the concept of significant figures in calculations, and in particular, to apply the rules
 of significant figures when using laboratory measurements and in the analysis of
 experimental data.
- 2. Explain the atomic and molecular structure and discuss the arrangement of atoms or molecules in different forms of matter.
- 3. Utilize qualitatively and quantitatively chemical equations for a variety of chemical reaction types.
- 4. Use the principles of quantum mechanics in atoms and discuss how the electronic structure can be employed to provide explanation for the periodic trends of various properties.

- 5. Discuss the basic principles of chemical bonding including the application of molecular orbitals in the description of covalent bonding.
- 6. Explain the behavior of ideal and real gases, liquids and solids.
- 7. Use the basic principles of thermochemistry to predict the heat transfer involved in chemical combustion processes.
- 8. Use the basic principles of chemical kinetics and chemical equilibria to explain the speeds and efficiencies of chemical processes.
- 9. Combine the enthalpy change with the change in the randomness or disorder that accompanies of a chemical reaction, and understand the idea of spontaneous processes.
- 10. Discuss the basic principles of electrochemistry, including redox equations, voltaic cells, batteries and fuel cells.
- 11. Explain the process of corrosion and discuss the factors that contribute to this chemical change, with emphasis on the rusting of iron.
- 12. Discuss the nature of organic compounds by studying their chemical structure and reactions, the types of hydrocarbons, and the functional groups.
- 13. Name organic compounds and discuss the physical and chemical properties of saturated, unsaturated and aromatic hydrocarbons.

Course Content:

Theory:

- Matter and measurement: classification of matter, physical and chemical properties of matter, units of measurement, uncertainty in measurement and dimensional analysis.
- Atoms, molecules and ions: atomic theory, atomic structure, ions, molecules, ionic and molecular compounds, nomenclature of inorganic compounds.
- Stoichiometry: balancing chemical equations, types of chemical reactions, molecular and empirical formulas, Avogadro's number and mole, calculations with chemical formulas and equations, percent composition and combustion analysis.
- Aqueous reactions and solution stoichiometry: properties of aqueous solutions, solubility rules, precipitation reactions, acids, bases and neutralization reactions, concentration, solution stoichiometry.
- Electronic structure of atoms: quantum mechanics, atomic orbitals, electron configurations and the periodic table.
- Periodic properties of elements: metals, nonmetals, and metalloids, periodic trends in the sizes of atoms and ions, ionization energy and electron affinities.
- Chemical bonding: Lewis symbols and structures, the octet rule, ionic, covalent and metallic bonding, bond polarity and electronegativity, bond strength.
- Gases, liquids and solids: gas characteristics, gas laws, the ideal-gas equation, real gases, intermolecular forces, properties of liquids, phase changes and phase diagrams, structure and classifications of solids.
- Thermochemistry: kinetic and potential energy, the first law of thermodynamics, heat and

- work, enthalpy, enthalpies of formation and reaction (endothermic and exothermic reactions), Hess's law, calorimetry, energy in food and fuels.
- Chemical kinetics: reaction rates, rate laws, reaction orders, collision model, Arrhenius equation and activation energy, reaction mechanism, catalysis.
- Chemical equilibrium: equilibrium constants, homogeneous and heterogeneous equilibria, le Châtelier's principle.
- Thermodynamics: spontaneous processes, entropy, the second law of thermodynamics, entropy changes, Gibbs free energy.
- Electrochemistry: oxidation numbers, oxidation-reduction reactions, balancing redox reactions, voltaic cells and cell potentials, Nernst equation, batteries and fuel cells, corrosion, electrolysis.
- Organic chemistry: nomenclature, structure, properties and reactions of organic compounds, alkanes, alkenes, alkynes and aromatic hydrocarbons, functional groups (alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amines and amides).

Laboratory Experiments:

- Laboratory Safety Demonstrations
- Experiment 1: Basic Laboratory Techniques
- Experiment 2: Experimental Determination of Density
- Experiment 3: Preparation of Solutions of Known Concentrations / Spectrophotometric Techniques in Chemistry
- Experiment 4: Estimation of the Molar Mass of Carbon Dioxide (CO₂) Gas
- Experiment 5: Molar Heat of Solution for Ionic Solids
- Experiment 6: Determination of the Rate Law and Activation Energy
- Experiment 7: Determination of the Dissociation Constant of Acetic Acid
- Experiment 8: Solubility-Polarity of Organic Compounds

Learning Activities and Teaching Methods:

Lectures, Laboratory Practical Sessions, and Assignments.

Assessment Methods:

Lab Attendance/Reports, Mid-Term Test, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Chemistry The Central Science	T.L. Brown, H.E. Lemay, B.E. Bursten, C.J. Murphy	Prentice Hall	2009 11 th Edition	0-13-235848-4
P.G. Hajigeorgiou	CHEM-105 Laboratory Manual	University of Nicosia	2010	

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Chemistry	Raymond Chang	McGraw Hill, 10 th edition	2010	978-0-07- 351109-2
Chemistry	John E. McMurry, Robert C. Fay, Jordan Fantini	Pearson Prentice Hall, 6 th edition	2012	0-321-76087-5
General Chemistry	Darrell D. Ebbing, Steven D. Gammon	Houghton Mifflin Company	2009	0-618-85748-6