

University of Nicosia, Cyprus

Course Code	Course Title	ECTS Credits
CEE-330	Soil Mechanics	7
Department	Semester	Prerequisites
Engineering	Fall, Spring	MENG-250
Type of Course	Field	Language of Instruction
Required	Civil & Environmental	English
	Engineering	_
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	3 rd	Dr Ernestos N. Sarris
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce the students to the soil origins and its categories (e.g. sands and clays) and methods of soils classification
- Understand the three phase mixture theory (solid, liquid, and gas) phase and understand basic soil properties like unit weight, moisture content, void ratio, and degree of saturation.
- Teach the students to calculate underground stresses and pore pressures due to selfweight loading and due to structure-weight loading.
- Familiarize the students with the concept of effective stress principle and its importance in soil like deformations, failures and settlements.
- Help the students understand similarities and differences in the mechanical behavior between loose sands and normally consolidated clays as well as similarities and differences between dense sands and over-consolidated clays.
- Application of numerical calculations for estimating soil strength for design applications due to a variety of external loads.
- Understand the basic principles of groundwater flow and permeability in soils.
- Familiarize the students with laboratory equipment and experimental testing in soil mechanics.
- Allow students to perform laboratory testing for estimating the physical characteristics of soils (Atterberg limits)
- Perform laboratory testing for understanding soil compaction processes with the Proctor method (Proctor test).
- Handle experimental data of permeability test under steady head.
- Perform laboratory testing of direct shear in soil like materials (granular)
- Perform laboratory testing and collect data of the consolidation test for clay like materials.
- Perform the cone penetration test used in the site for calculating the density of soils.

Learning Outcomes:

Upon completion of the course, the student should be able to:

- Identify soils origin and soil classification.
- Perform calculations for basic soil properties like unit weight, moisture content, void ratio, and degree of saturation.
- Explain soil compaction processes and equipment as well as the use of proper laboratory testing related with compaction.
- Recognize and calculate the stresses distribution in soil mass due to external loads and be able to calculate the soils strength for design applications.
- Understand the effective stress principle and calculate deformations and failures due to shearing.
- Recognize how settlement occurs in soil and be able to calculate settlements based on varying loading and soil conditions.
- Perform calculations of groundwater flow in geotechnical structures.
- Understand and obtain technical knowhow of laboratory equipment.
- Understand how to prepare a geotechnical and laboratory report.

Course Contents:

- Introduction to the origins of soils and rocks.
- Weight-Volume relationships and structure of soils.
- Engineering classification of soils.
- Soil compaction.
- Permeability and seepage.
- Insitu stresses and stresses in a soil mass.
- Compressibility of soils
- Shear strength of soils

Learning Activities and Teaching Methods:

Lectures, in-class examples and exercises, projects, discussion

Assessment Methods:

Homework assignments, Laboratory reports, Mid-term, Final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Braja M. Das and	Principles of Geotechnical	Cengage	2013	978-
Khaled Sobhan	Engineering, 8 th ed.	Learning		1133108665
Braja M. Das	Soil Mechanics Laboratory	Oxford	2012	978-
-	Manual, 8 th ed.	University		0199846375

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Jonathan	Soil Mechanics	CRC Press	2012	978-
Knappett and R.F				0415561266

Graig				
Ian Smith	Elements of Soil	Wiley-	2006	978-
	Mechanics, 8 th ed.	Blackwell		1405133708