

Course Syllabus

Course Code	Course Title	ECTS Credits
CEE-330	Soil Mechanics	7
Prerequisites	Department	Semester
MENG-250	Engineering	Fall
Type of Course	Field	Language of Instruction
Required/Elective	Civil & Environmental Engineering	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr Ernestos Sarris	3^{rd}
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- Introduce the students to the soil origins and its categories (e.g. sands and clays) and methods of soils classification.
- Understand the three-phase mixture theory (solid, liquid, and gas) phase and understand basic soil properties like unit weight, moisture content, void ratio, and degree of saturation.
- Teach the students to calculate underground stresses and pore pressures due to selfweight loading and due to structure-weight loading.
- Familiarize the students with the concept of effective stress principle and its importance in soil like deformations, failures and settlements.
- Help the students understand similarities and differences in the mechanical behavior between loose sands and normally consolidated clays as well as similarities and differences between dense sands and over-consolidated clays.
- Application of numerical calculations for estimating soil strength and stress distribution within soil masses for design applications due to a variety of external loads.
- Understand the basic principles of groundwater flow and permeability in soils.
- Underline the importance of 1-D consolidation for fine-grained materials.
- Demonstrate the problems arising from primary and secondary consolidation and perform calculations for this physical problem.
- Familiarize the students with laboratory equipment and experimental testing in soil mechanics.
- Allow students to perform laboratory testing for estimating the physical characteristics

- of soils (Atterberg limits).
- Perform laboratory testing for understanding soil compaction processes with the Proctor method (Proctor test).
- Handle experimental data of permeability test under steady head.
- Perform laboratory testing of direct shear in soil like materials (granular).
- Perform laboratory testing and collect data of the consolidation (oedometer) test for clay like materials.
- Perform the cone penetration test used in the site for calculating the density of soils.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Identify soils origin and soil classification.
- 2. Perform calculations for basic soil properties like unit weight, moisture content, void ratio, and degree of saturation.
- 3. Explain soil compaction processes and equipment as well as the use of proper laboratory testing related with compaction.
- 4. Recognize and calculate the stresses distribution in soil mass due to external loads and be able to calculate the soils strength for design applications.
- 5. Understand the effective stress principle and calculate deformations and failures due to shearing.
- 6. Recognize how settlement occurs in soil and be able to calculate settlements based on varying loading and soil conditions.
- 7. Perform calculations of groundwater flow in geotechnical structures.
- 8. Estimate the permeability of fine and coarse-grained soils.
- 9. Identify the most important parameters in the physical mechanism of primary and secondary consolidation.
- 10. Determine the shear strength of soils through applied exercises and laboratory experimentation.
- 11. Understand and obtain technical knowhow of laboratory equipment.
- 12. Understand how to prepare a geotechnical and laboratory report.

Course Content:

- Introduction to the origins of soils and rocks.
- Weight-Volume relationships and structure of soils.
- Engineering classification of soils.
- · Soil compaction.
- Permeability and seepage.
- Insitu stresses and stresses in a soil mass.
- Compressibility of soils.
- Shear strength of soils.

Learning Activities and Teaching Methods:

Lectures, in-class examples, tutoring exercises, Laboratory experimentation, discussion.

Assessment Methods:

Homework assignments, Project, Laboratory reports, Mid-term examination, Final examination.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Soil Mechanics and Foundations 3rd ed.	Muni Budhu	John Wiley & Sons, INC.	2011	978- 0470556849
Soil properties: Testing, Measurement and evaluation 6th ed.	Cheng Liu and Jack B. Evett	Pearson- Prentice Hall	2009	978- 0136141235

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Soil Mechanics 8th ed.	Jonathan Knappett and R.F Graig	CRC Press	2012	978- 0415561266
Elements of Soil Mechanics 8th ed.	Ian Smith	Wiley Blackwell	2006	978- 1405133708
Principles of Geotechnical Engineering, 8th ed.	Braja M. Das and Khaled Sobhan	Cengage Learning	2013	978- 1133108665