

Course Code BLOC-524	Course Title Cryptographic Systems Security	ECTS Credits 10
Prerequisites BLOC-511DL	Department Computer Science	Semester Fall/Spring/Summer
Type of Course Elective	Field Computer Science	Language of Instruction English
Level of Course 2nd Cycle	Lecturer(s) Dr. Theodosis Mourouzis	Year of Study 2nd
Mode of Delivery Distance Learning	Work Placement N/A	 Co-requisites principles of programming (basic) Modular arithmetic in mathematics fluency

Objectives of the Course:

- 1. Understanding of the basic security requirements such as confidentiality, integrity, authenticity, anonymity and how these requirements can be met.
- 2. Detailed study of cryptographic primitives such as encryption/decryption, hash functions, digital signatures, message authentication codes.
- 3. Detailed study of the security of the aforementioned cryptographic primitives and methods to attack them.
- 4. Understanding the purpose that these cryptographic primitives serve to the design of Blockchain or Distributed Ledger Technologies (DLTs) related systems.
- 5. Compare several Blockchain and DLT frameworks from crypto point of view.
- 6. Understanding of several attacks on Blockchain or DLT schemes.

Learning Outcomes:

By the completion of the course students are expected to be able to:

1. Understand fundamental security requirements such as confidentiality, integrity,

- authenticity, and anonymity.
- 2. Understand the basic cryptographic primitives and how these are combined in order to design Blockchain or DLT related schemes.
- 3. Understand possible attacks on cryptographic primitives by understanding how to attack the underlying computational hard problems on which the security of these primitives relies.
- 4. Understand possible attacks on different Blockchain or DLT schemes.
- 5. Conduct security evaluation of such systems from a crypto point of view.
- 6. Categorising different Blockchain or DLT networks with respect to their crypto design.

Course Contents:

- 1. Introduction to security requirements (confidentiality, integrity, authenticity, anonymity, non-repudiation) and computational hard problems (integer factoring, discrete logarithm problem etc)
- 2. Cryptographic design and crypto primitives: confusion, diffusion, avalanche effect, notion of randomness, encryption decryption (symmetric & asymmetric), hash functions, message authentication codes, digital signatures (multi-signature schemes, ring signatures), zero knowledge proofs, key exchange protocols
- 3. Cryptographic attacks: attacks on encryption protocols, hash function attacks
- 4. Cryptography for Blockchain or DLTs: blocks, Merkle Trees, hashchain, on the longest chain, soft/hard forks, challenges (scalability, anonymity, interoperability)
- 5. Cryptography for digital currencies/tokens: wallets (hot, cold, custodian), multisignature wallets, hierarchical deterministic wallets
- 6. Attack Frameworks for Blockchain or DLTs: 50+1 attack, eclipse attack, selfish miner attack, attacks on wallets
- 7. Consensus Algorithms: proof of work, proof of stake, delegated proof of stake, proof of memory/space, proof of elapsed time, multisignature scheme, Byzantine fault, tolerance, federated Byzantine agreement
- 8. Study of different Blockchain/DLT frameworks from crypto perspective: Bitcoin, Ripple, Monero

Learning Activities and Teaching Methods:

Lectures, Live Discussions, Course Forum discussions, Case-study analyses

Assessment Methods:

Written and programming assignments, mid-term exam, final exam

Recommended Textbooks/Readings:

- Bruce Schneier . Applied Cryptography: Protocols, Algorithms and Source Code in C. Wiley Publications (2015)
- Charles P. Pfleeger And Shari Lawrence Pfleeger. Security In Computing. 5th Edition, Prentice Hall Publications (2018)
- Alfred J. Menezes, Jonathan Katz, Paul C. van Oorschot, Scott A. Vanstone.
 Handbook of Applied Cryptography (Discrete Mathematics and Its Applications) CRC Press Publications (1996)

Short Intro to Crypto World [optional]:

• Theodosis Mourouzis. *Optimizations in algebraic and differential cryptanalysis*. University College London, UK (2015)

Recommended Articles/ Reading List:

- Claude E. Shannon. *Communication theory of secrecy systems*. Bell System Technical Journal 28 (1949)
- Satoshi Nakamoto. *Bitcoin: A peer-to-peer electronic cash system*. Available: http://www.bitcoin.org/ bitcoin.pdf (2009)
- Dylan Yaga, Peter Mell, Nik Roby, Karen Scarfone. NISTIR 8202 Blockchain Technology Overview. This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8202 (2018)
- Miers, C. Garman, M. Green, A. D. Rubin. Zerocoin: Anonymous Distributed E-Cash from Bitcoin, in 2013 IEEE Symposium on Security and Privacy, San Francisco, CA, pp 397- 411 (2013)
- R.C. Merkle. Protocols for public key cryptosystems. In Proc. 1980 Symposium on Security and Privacy, IEEE Computer Society, pages 122-133, April 1980 (1980)