Course Code
BLOC-524

Course Title
Cryptographic Systems Security

ECTS Credits
10

Prerequisites
BLOC-511DL

Department
Computer Science

Semester
Fall/Spring/Summer

Type of Course
Elective

Field
Computer Science

Language of Instruction
English

Level of Course
2nd Cycle

Lecturer(s)
Dr. Theodosis Mourouzis

Year of Study
2nd

Mode of Delivery
Distance Learning

Work Placement
N/A

Co-requisites
- principles of programming (basic)
- Modular arithmetic in mathematics fluency

Objectives of the Course:

1. Understanding of the basic security requirements such as confidentiality, integrity, authenticity, anonymity and how these requirements can be met.
2. Detailed study of cryptographic primitives such as encryption/decryption, hash functions, digital signatures, message authentication codes.
3. Detailed study of the security of the aforementioned cryptographic primitives and methods to attack them.
4. Understanding the purpose that these cryptographic primitives serve to the design of Blockchain or Distributed Ledger Technologies (DLTs) related systems.
5. Compare several Blockchain and DLT frameworks from crypto point of view.
6. Understanding of several attacks on Blockchain or DLT schemes.

Learning Outcomes:

By the completion of the course students are expected to be able to:

1. Understand fundamental security requirements such as confidentiality, integrity,
2. Understand the basic cryptographic primitives and how these are combined in order to design Blockchain or DLT related schemes.
3. Understand possible attacks on cryptographic primitives by understanding how to attack the underlying computational hard problems on which the security of these primitives relies.
4. Understand possible attacks on different Blockchain or DLT schemes.
5. Conduct security evaluation of such systems from a crypto point of view.
6. Categorising different Blockchain or DLT networks with respect to their crypto design.

Course Contents:

1. Introduction to security requirements (confidentiality, integrity, authenticity, anonymity, non-repudiation) and computational hard problems (integer factoring, discrete logarithm problem etc)
2. Cryptographic design and crypto primitives: confusion, diffusion, avalanche effect, notion of randomness, encryption decryption (symmetric & asymmetric), hash functions, message authentication codes, digital signatures (multi-signature schemes, ring signatures), zero knowledge proofs, key exchange protocols
3. Cryptographic attacks: attacks on encryption protocols, hash function attacks
4. Cryptography for Blockchain or DLTs: blocks, Merkle Trees, hashchain, on the longest chain, soft/hard forks, challenges (scalability, anonymity, interoperability)
5. Cryptography for digital currencies/tokens: wallets (hot, cold, custodian), multi-signature wallets, hierarchical deterministic wallets
6. Attack Frameworks for Blockchain or DLTs: 50+1 attack, eclipse attack, selfish miner attack, attacks on wallets
7. Consensus Algorithms: proof of work, proof of stake, delegated proof of stake, proof of memory/space, proof of elapsed time, multisignature scheme, Byzantine fault tolerance, federated Byzantine agreement
8. Study of different Blockchain/DLT frameworks from crypto perspective: Bitcoin, Ripple, Monero

Learning Activities and Teaching Methods:

Lectures, Live Discussions, Course Forum discussions, Case-study analyses

Assessment Methods:

Written and programming assignments, mid-term exam, final exam
Recommended Textbooks/Readings:

Short Intro to Crypto World [optional]:

Recommended Articles/Reading List:

- Dylan Yaga, Peter Mell, Nik Roby, Karen Scarfone. *NISTIR 8202 Blockchain Technology Overview*. This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8202 (2018)