

Course Syllabus

Course Code	Course Title	ECTS Credits
BLOC-523DL	Permissioned Blockchain Programming	10
Prerequisites	Department	Semester
BLOC-512DL BLOC-514DL	Digital Innovation	Fall/Spring
Type of Course	Field	Language of Instruction
Elective	Software engineering	English
Level of Course	Lecturer(s)	Year of Study
2 nd Cycle	Dr. Elias Iosif	2nd
Mode of Delivery	Work Placement	Corequisites
Distance Learning	N/A	N/A

Course Objectives:

The main objective of this course is to provide students with a solid technical expertise (focusing on software engineering aspects with hands-on experience) regarding the development and application of permissioned Distributed Ledger Technologies (DLTs). This type of DLTs exhibits a complementary character with respect to permissionless (public) DLTs, e.g., as Bitcoin and Ethereum, and they are meant to facilitate enterprise-oriented decentralized applications. The course is structured around three broad sections:

- 1. The position of permissioned DLTs in the entire spectrum of DLTs with particular focus on their technical properties from a software engineering point of view;
- Hands-on experience with a major/indicative type of permissioned DLT along with the presentation of the respective theory and models: in particular, the course will be focused on the Hyperledger Fabric covering network setup and management as well as development of smart contracts-based backend applications;
- Data structures utilized at the core of DLTs, i.e., for the implementation of the ledgers. In this context, recently proposed database models will be presented along with a number of indicative distributed/decentralized structures

Learning Outcomes:

After completion of the course students are expected to be able to:

- Understand the role of DLTs in software engineering: the functional properties of DLTs as architectural/storage/computational/communication element;
- Understand the key differences between permissionless and permissioned DLTs;
- Analyze enterprise use cases and identify the conditions according to which permissioned DLTs are required;
- Understand the technical terminology of Hyperledger Fabric;
- Setup/configure and manage a Hyperledger Fabric network;
- Develop and deploy smart contracts in Hyperledger Fabric;
- Setup/configure and manage database systems used in DLTs;
- Understand the core functionality of non-blockchain data structures that enable distributed/decentralized data storage

Course Content:

- 1. DLTs in software engineering (as architectural/storage/computational/communication elements)
- 2. DLTs as enterprise systems (permissionless vs. permissioned ledgers)
- 3. DLTs: Architectural overview
- 4. DLTs: Main functionalities and model
- 5. DLTs: Blockchain network
- 6. DLTs: Identities
- 7. DLTs: Memberships
- 8. DLTs: Policies and peers
- 9. DLTs: Chaincode
- 10. DLTs: Ledger
- 11. Databases in DLTs: CouchDB and LevelDB
- 12. Alternative data structures: InterPlanetary File System (IPFS), distributed hash tables

Learning Activities and Teaching Methods:

Lectures and assignments

Assessment Methods:

Assignments, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Hyperledger fabric: a distributed operating system for permissioned blockchains	Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y. and Muralidharan, S.	In Proceedings of the Thirteenth EuroSys Conference. ACM.	2018	
IPFS-content addressed, versioned, P2P file system	Benet, J.	arXiv preprint arXiv:1407.3561.	2014	
Identity Discovery in Bitcoin Blockchain: Leveraging Transactions Metadata via Supervised Learning	Christodoulou, C., Iosif, E., Louca, S., and Themistocleous, M	International Conference on Big Data and Blockchain.	2019	

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Pervasive decentralisation of digital infrastructures: a framework for	Glaser, F	In the 50th Hawaii International Conference on System Sciences (HICSS	2017	

	1			
blockchain enabled system and use case analysis		2017).		
Hyperledger- fabricdocs Documentation: Release master	Hyperledger (2019).	Online	2019	
A performance comparison of SQL and NoSQL databases.	Li, Y., and Manoharan, S.	In 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM) (pp. 15-19). IEEE.	2013	
Hydras and IPFS: a decentralised playground for malware	Patsakis, C., and Casino, F.	International Journal of Information Security, 1-13.	2019	
A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform	Sousa, J., Bessani, A., and Vukolic, M.	In the 48th annual IEEE/IFIP international conference on dependable systems and networks (DSN).	2018	
Business Transformation Through Blockchain: Volume I	Treiblmaier, H., & Beck, R. (Eds.)	Palgrave Macmillan.	2019	
Architecture for blockchain applications	Xu, X., Weber, I., & Staples, M	Springer.	2019	
The blockchain as a software	Xu, X., Pautasso, C., Zhu, L.,	In 2016 13th Working	2016	

connector	Gramoli, V., Ponomarev, A., Tran, A. B., and Chen, S.	IEEE/IFIP Conference on Software Architecture (WICSA).		
Distributed hash table: Theory, platforms and applications (pp. 5-20)	Zhang, H., Wen, Y., Xie, H., and Yu, N.	New York: Springer	2013	