Course Syllabus

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>ECTS Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOC-521DL</td>
<td>Digital Currency Programming</td>
<td>10</td>
</tr>
</tbody>
</table>

Prerequisites

<table>
<thead>
<tr>
<th>Department</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOC-512DL</td>
<td>Fall/Spring</td>
</tr>
<tr>
<td>BLOC-514DL</td>
<td></td>
</tr>
</tbody>
</table>

Type of Course

<table>
<thead>
<tr>
<th>Field</th>
<th>Language of Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>English</td>
</tr>
</tbody>
</table>

Level of Course

<table>
<thead>
<tr>
<th>Lecturer(s)</th>
<th>Year of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Konstantinos Karasavvas</td>
<td>2nd</td>
</tr>
</tbody>
</table>

Mode of Delivery

<table>
<thead>
<tr>
<th>Work Placement</th>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance Learning</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Important Note: Students should be comfortable with their OS (installing new software, setting up programming environments, resolving dependencies, etc.) as well as have some programming experience.

Course Objectives:

The main objectives of the course are to:

- Explain how bitcoin works, from when a transaction is created to when it is considered part of the blockchain
- Describe private and public keys as well as the different types of addresses and how exactly they are constructed and used
- Introduce the students to the Bitcoin Script language including developing different type of scripts using both a node’s CLI as well as using Python.
- Demonstrate advanced scripting and how it can be used to handle several real-world use cases with code examples
- Expose students to the P2P network, how it operates, the different kinds of potential network forks and explain the Bitcoin’s network mechanisms for maintaining and upgrading
- Expose students to advanced topics like Atomic Swaps, Hashlocks, Payment Channels and more
- Discuss promising state of the art feature development

Learning Outcomes:
After completion of the course students are expected to be able to:

- Understand the technology components of Bitcoin and how it really works behind-the-scenes
- Explain in detail how keys and addresses work on Bitcoin
- Develop scripts using the Bitcoin Script language and have a deep understanding of the provided API
- Develop programs using Python (the rational is the same of any programming language) to create Bitcoin scripts and interact with Bitcoin nodes
- Understand how the Bitcoin P2P network operates and how it can evolve (upgrading mechanisms)
- Explain advanced blockchain topics like Atomic Swaps, Payment Channels, Lightning Network
- Be aware of challenges and future development on the Bitcoin network (applicable in other blockchains)

Course Content:

1. How Bitcoin works
 a. Introduce transactions and how they are propagated
 b. Explain how transactions form blocks
 c. Deconstruct a block and it's header and explain in detail how mining works
 d. Demonstrate how Nakamoto consensus works and explain why previous distributed consensus algorithms where insufficient
 e. Describe the development environment and interact with a node with examples
2. Keys and Addresses
 a. Remind basic cryptographic primitives
 b. Explain in detail and demonstrate how private keys, public keys and addresses are generated
 c. Explain different types of wallets
 d. Describe HD wallets in detail while demonstrating the benefits with real-world scenarios
 e. Create keys and addresses using a node and programmatically
 f. Describe payment BIPs
3. Scripting
a. Explain transactions in detail
b. Introduce Script and important opcodes
c. Go through details on how to create scripts
d. Dissect P2PKH and P2SH transaction types with examples
e. Examine several ways to create transactions

4. Advanced Scripting
 a. Introduce multi-signature transactions
 b. Describe direct and indirect ways to store data on the blockchain
 c. Explain different types of timelock transactions with examples
 d. Explain the Segregated Witness upgrade and how it is implemented as well as native and nested segwit transactions
 e. Describe other network features like RBF and CPFP

5. Bitcoin Networks
 a. Introduce the P2P network and how it operates
 b. Explain what are soft- and hard-forks and demonstrate with examples
 c. Describe the process of how the network is upgraded
 d. Explain the concept of time on the network
 e. Discuss how to talk directly at the P2P network level

6. Advanced Topics
 a. More Scripting (Atomic Swaps, Hashlocks, Payment Channels)
 b. Describe Lightning Network
 c. Discussion of state of art (in development) topics

Learning Activities and Teaching Methods:
Lectures, Practical Exercises, and Projects

Assessment Methods:
Assignment (individual programming), Final Exam

Required Textbooks / Readings:

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
<th>Year</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastering Bitcoin</td>
<td>Andreas Antonopoulos</td>
<td>O'Reilly Also Online</td>
<td>2017</td>
<td>978-1491954386</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>https://github.com/bitcoinbook/bitcoinbook</td>
</tr>
</tbody>
</table>

Recommended Textbooks / Readings:

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
<th>Year</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Bitcoin</td>
<td>Jimmy Song</td>
<td>O’ Reilly</td>
<td>2019</td>
<td>978-1492031499</td>
</tr>
<tr>
<td>The Science of the Blockchain</td>
<td>Roger Wattenhofer</td>
<td>CreateSpace Independent Publishing Platform</td>
<td>2016</td>
<td>978-1522751830</td>
</tr>
</tbody>
</table>

Other resources:
2. Learn Bitcoin from the command line - https://github.com/ChristopherA/Learning-Bitcoin-from-the-Command-Line