

Course Syllabus

Course Code	Course Title	ECTS Credits
BIOL-101	General Biology I	6
Prerequisites	Department	Semester
A-level High-School Biology or a Biology-110 Foundation Course	Life and Health Sciences	Fall
Type of Course	Field	Language of Instruction
Required	Biology	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr Stella Nicolaou	1 st
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- Make students aware of the diversity/complexity of organisms, the major categories of biological molecules and their basic functions.
- Describe the structure-function of cell organelles and demonstrate the differences between prokaryotic and eukaryotic cells.
- Demonstrate the energy requirements of organisms through the study of energy pathways such as photosynthesis and respiration.
- Make students aware of the biological processes of cell division, reproduction and genetic inheritance.
- Provide students the opportunity to study the scientific method through experiments and to practice problem solving techniques.
- Provide students the opportunity to practice on basic laboratory equipment, to collect metric measurement, report data and interprete results accurately.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Identify basic biological macromolecules from their chemical structure and name their basic function.
- 2. Define the basic structure and function of cell membranes and organelles and compare prokaryotic and eukaryotic cells.
- 3. Explain how organisms derive and utilize energy through photosynthesis and cellular respiration.
- 4. Explain cell division and identify the basis of genetic inheritance.
- 5. Apply the scientific method to collect and interpret experimental data, propose scientific conclusions and write a formal laboratory report.
- 6. Use basic laboratory equipment and work with others.

Course Content:

1. Introduction to the Science of Life, Levels of Organization LAB: Introduction and Laboratory Safety Issues 2. The chemical basis of life LAB: The process of Scientific Inquiry: The elements of an experiment 3. Properties of Water, pH, pKa, Acid/bases LAB: Use of the Microscope 4. Structure function of macromolecules in the living cell LAB: Biomolecules: Qualitative determination of Sugars, Lipids, Proteins and DNA. 5. Prokaryotic vs. Eukaryotic cells: cellular organelles: structure vs. function. 6. Membrane structure and function: cell communication. LAB: Cell structure and Function: Osmosis 7. Laws of Thermodynamics, ATP regeneration, Enzyme Activity, Feedback Inhibition LAB: Cell metabolism: Effect of pH on the enzyme activity LAB: Cell metabolism: Effect of temperature on the enzyme activity 8. Cellular respiration, electron transport and oxidative phosphorylation. LAB: Respiration: Alcohol fermentation 9. Photosynthesis: the light and dark reactions. LAB: Photosynthesis: Isolation of leaf pigments; Absorption spectra of leaf pigments 10. Cell Reproduction: Cell Cycle. 11. Mitosis vs Meiosis. LAB: Mitosis

Learning Activities and Teaching Methods:

Lectures, Laboratory Sessions, Group learning, discussions.

Assessment Methods:

Laboratory reports/exams, Mid-term Exams, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Biology (with Student CD- ROM), 8/e	N.A. Campbell and Jane B. Reece	Benjamin/Cummings	2008	ISBN: 978-0- 321-53616-7
Biology Laboratory Manual	Koptides M. and Kastanos E	University of Nicosia	2009	

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
"Biology: Concepts and Connections"	N.A. Campbell, N.E. Ervin	Benjamin/ Cummings	2002, 4th Edition	080536627X
"Practical skills in Biology"	A. Jones, R. Reed and J. Weyers	Benjamin/ Cummings	2003, 3rd Edition	ISBN: 0-130- 45141