

Course Syllabus

Course Code	Course Title	ECTS Credits		
ARCH-462	Advanced Computational Design	4		
Prerequisites	Department	Semester		
ARCH-362	Architecture	Spring		
Type of Course	Field	Language of Instruction		
Major Elective	Architecture	English		
Level of Course	Lecturer	Year of Study		
1 st Cycle	Michail Georgiou	4 th		
Mode of Delivery	Work Placement	Corequisites		
Face to face	N/A	-		

Course Objectives:

The main objectives of the course are to:

- Enhance the participants' skills in advanced computational methods through the use of highend CAD tools such as Graphical Algorithm editors, third-party plugins and scripting for controlling objective data and informing designs.
- Introduce a performance-based design approach by generating responsive systems which follow the design intentions and incorporate environmental or other constraints.
- Address multi-objective design problems by employing optimization techniques.
- Extract, analyze and visualize design data for information or representation.
- Introduce the participants to advanced digital fabrication tools and technologies including Robotics, Rapid Manufacturing, 3d Scanning, Virtual Reality, Augmented Reality and UAVs
- Introduce participants to scripting and customized computational tools through lectures and demonstrations
- Connect academia and industry through site visits and lectures at realized projects and industrial establishments exhibiting applications of computational design.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Identify the applications of advanced computational design for the construction industry.
- 2. Illustrate and implement computer graphical programming for design applications
- 3. Evaluate multi-objective design problems by employing optimization techniques.
- 4. Develop and modify advanced, performative computational models
- 5. Use 3rd party plugins to inform designs against environmental, and other constrains

- 6. Recognize the need for scripting to address specific computational problems.
- 7. Distinguish large amounts of computational data.
- 8. Appraise the use of advanced digital fabrication tools and technologies for design purposes.

Course Content:

- Parametric-associative design logic (Revision of basic notions taught in ARCH-362)
- Advanced Computational Design applications and limitations
- Performance Based and Multi-objective design optimization techniques
- Advanced Computational Geometries
- Mathematical Concepts for Computational Design
- Designing with Lists and Data Trees
- Simulating Environmental Performance
- Acquiring and Managing Performance Data
- Designing using Data
- Introduction to Scripting and Object Orientated Programming
- Industrial digital fabrication tools, technologies and applications

Learning Activities and Teaching Methods:

Lectures, Computer Demonstrations, Discussions, Site Visits, Field Trips, Presentations, Practical Exercises and Assignments

Assessment Methods:

Presentation, Homework, Final Project and Attendance

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Grasshoper Primer 3rd Edition	ModeLab	Robert McNeel & Associates	2017	http://grasshopperprimer.com
Lecturer's Notes / Presentations	Michail Georgiou			

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Meredith M., Iasch A. (ed.), Sasaki M., (ed),	From Control to Design: Parametric/Algorithmic Architecture	Actar	2008	8496540790 978- 8496540798
LadyBug Primer	Mostapha Sadeghipour Roudsari		2018	http://www.gras shopper3d.com/ group/ladybug
Otto, F. and Rasch B.,	Finding Form: Towards an Architecture of the	Axel Menges	1996	3930698668
Fabio Gramazio, Matthias Kohler, Jan Willmann	The Robotic Touch: How Robots Change Architecture	Park Books	2014	3906027376