

Course Syllabus

Course Code	Course Title	ECTS Credits
ARCH-432	Fundamentals of Earthquake Engineering	4
Prerequisites	Department	Semester
ARCH-212	Architecture	Spring
Type of Course	Field	Language of Instruction
Elective	Architecture	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr Tonia Sophocleous Lemonari	4 th
Mode of Delivery	Work Placement	Corequisites
Face to face	N/A	-

Course Objectives:

The main objectives of the course are to:

- Introduce the basic geological mechanisms causing earthquakes
- List the characteristics of ground shaking relevant to buildings
- Explain the basic structural requirements for seismic resistance
- Provide an overview of the philosophy of seismic design
- Enable readers to grasp the concepts and then readily apply them to their seismic resistant designs following a non-mathematical approach that focuses upon the principles and practice of seismic resistant design
- Provide an overview of seismic force resisting systems
- Introduce the principles of designing a structural system (i.e. kinetic mechanism) capable of resisting seismic forces both safely and economically
- Explain the role of structures and statics as they relate to earthquake engineering fundamentals
- Explore the potential for innovative configuration design of a system for seismic resistance

Learning Outcomes:

After completion of the course students are expected to be able to:

1. Apply background knowledge on Structural Principles to discuss Seismic Resisting Structures behavior

- 2. Recognise the necessity to safeguard a building against seismic damage
- 3. Illustrate the steps involved in designing a ductile structural system (i.e. a kinetic mechanism).
- 4. Evaluate why architects need to design earthquake resistant buildings
- 5. Demonstrate a general interest on the earthquake phenomenon and concepts on seismic resistant design
- 6. Design and defend key concepts with accompanying visual material.
- 7. Demonstrate the effect of kinetic mechanism configuration (plan and section) on seismic performance.
- 8. Evaluate the seismic behavior with quality and quantity criteria
- 9. Design drawings of a kinetic structure to communicate seismic behavior

Course Content:

- Where, why and when earthquakes occur
- Basic geological mechanisms causing earthquakes
- Characteristics of ground shaking relevant to buildings
- · Factors that influence levels of seismic force
- basic principles of seismic resistance for buildings;
- Seismic hardware Dampers. Seismic isolators
- Dangers of poor configuration during a quake
- The architectural seismic design concept; How architects and structural engineers achieve ductile structures
- Basic structural requirements for seismic resistance as an integral part of the design process.
- Horizontal structure necessary for seismic resistance. Diaphragms.
- Vertical structure. Its difference from the structure resisting gravity forces.
- 'Kinetic mechanism' proposal from a seismic perspective
- Demonstration of the most suitable kinetic structures in different scales (mini-application, structures 2d, 3d, mega structure)
- Well-configured seismic resisting systems
- Structural form and details, alternative solutions for seismic response
- Qualitative verifications of conceptual kinetic design alternative solutions for seismic response

Learning Activities and Teaching Methods:

The teaching method in this course consists of Lectures, Case Study analysis, Guest lecturing, Pin ups, Tutorials, Sketchbook, Poster, Paper, Presentations.

Assessment Methods:

Participation, Discussion each week, Pin-ups for Midterm 1&2, Poster, Final Presentation drawings/models and written documentation paper.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Seismic Design for Architects Outwitting The Quake	Andrew Charleson	Architectural Press (an imprint of Elsevier)	2008	978-0-7506- 8550-4

Extended lecture notes related to the lectures are utilized.