

Course Syllabus

Course Code	Course Title	ECTS Credits
ARCH-262	Advanced Computer Aided Design	4
Prerequisites	Department	Semester
ARCH-261	Architecture	Spring
Type of Course	Field	Language of Instruction
Required	Architecture	English
Level of Course	Lecturer	Year of Study
1 st Cycle	Michail Georgiou	2 nd
Mode of Delivery	Work Placement	Corequisites
Face to Face	N/A	N/A

Course Objectives:

The main objectives of the course are to:

- Advance participants' theoretical framework and develop critical thinking by analyzing, presenting and discussing applications of computational design through case studies.
- Develop fluency in various CAD software through hands on application.
- Teach participants advanced modeling techniques through examples and homework assignments.
- Teach participants to produce both 2d and 3d files for digital fabrication.
- Encourage the utilization of digital fabrication techniques through the use of 3d printing, laser cutting and milling machines.
- Develop awareness of materials, their possibilities, capabilities and physical restrictions, through digital fabrication experimentation and material processing.
- Teach participants to identify and implement all necessary procedures to take a design idea from envisioning through to final physical prototype.
 - Provide an understanding of technological implications on design procedures and digital fabrication, through discussions, presentations and site visits.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Demonstrate advanced skills in digital design
- 2. Device advanced computational workflows involving various CAD software and apply them to individual projects to address specific design requirements
- 3. Interpret materials, possibilities and restrictions

- 4. Apply concepts of 3d printing, computer controlled cutting and computer controlled machining for testing and realizing design ideas
- 5. Analyze spatial conditions that respond to performative and aesthetic criteria utilizing digital design tools and methods.

Course Content:

- Advanced digital design workflows
- Advanced Geometries Modeling (NURBS)
- Point/Free Modeling
- Advanced Modeling using Plugins
- Panelisation techniques
- Exporting and preparing files for Fabrication CAD-CAM workflows
- 3D Printing
- Laser Cutting
- CNC

Learning Activities and Teaching Methods:

Lectures, Computer Demonstrations, Discussions, Presentations, Practical Exercises and Assignments

Assessment Methods:

Presentation

Homework

Final Project

Attendance

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Rhinoceros v5.0, Level 2, Training Manual	P. Golay, J. Hambly, M. Fugier, L. Ooosterveen	Robert McNeel & Associates	2015	https://www.rhino3d.com/down load/rhino/6.0/Rhino5Level2Tr aining

Lecturer's Michail Georgiou Notes / Presentations		
---	--	--

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Panelling Tools for Rhinoceros	Rajaa Issa	Robert McNeel & Associates	2012	https://wiki.mcn eel.com/labs/pa nelingtools
Pottmann, Hemut et al	Architectural Geometry	Bentley Institute Press	2007	978- 1934493045
Mark Garcia	AD: Patterns of Architecture	John Wiley & Sons	2009	0470699590
Philip Ball	Pattern Formation in Nature	Oxford University Press	1999	0198502435