

Course Syllabus

Course Code	Course Title	ECTS Credits
ARCH-212	Structural Mechanics- Statics II	4
Prerequisites	Department	Semester
ARCH-211	Architecture	Spring
Type of Course	Field	Language of Instruction
Required	Architecture	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr. Tonia Sophocleous Lemonari	2 nd
Mode of Delivery	Work Placement	Corequisites
Face to Face	N/A	-

Course Objectives:

The main objectives of the course are to:

- 1. Introduce the principles of beam types.
- 2. Illustrate principles of connections such as hinged, fixed at one or both ends and continuous beams.
- 3. Analyse principles of Axial Resistance, Joinery and Lateral Stability.
- 4. Introduce the principles of floor and roof framing structures
- 5. Introduce the principles of multi-bay and multi-story frames
- 6. Analyse case studies showcasing the architectural implications of structure
- 7. Implement complex systems combining 3dimensional arrangements of members in both tension and compression.
- 8. Apply structural analysis methods (i.e. analytical, graphical) to solve structural models
- 9. Use computer modelling for structural analysis, SAP2000 software

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Interpret building structural systems and their behavior under various types of load action.
- 2. Illustrate structural typologies.
- 3. Interpret modeling results of the professional software SAP2000
- 4. Compare building structure systems and their structural behavior.

- 5. Analyse structural systems of realised buildings.
- 6. Examine beam systems following a qualitative analytical process of hands on observation
- 7. Illustrate concepts of structural types.
- 8. Employ elementary mathematics to structural systems.
- 9. Apply rules of thumb to predict structural behavior.
- 10. Asses the computer software results.
- 11. Evaluate structural elements using simple equilibrium checks.
- 12. Judge structural member sizing towards optimization.
- 13. Compare and evaluate structure schemes through case study analysis.
- 14. Aquire structural intuition and engineering judgement.

Course Content:

- 1. Structures. Structure systems. Form. Forces. Building Loads
- 2. Basic Structure Concepts. Statics. Flexural Systems. Internal Forces. Preliminary structural design of beams.
- 3. Beam Types. Simple, cantilever, overhanging. Hinge-connected cantilever beams, Beams fixed at one or both ends, continuous beams.
- The effect of support conditions.
- 5. Floor and Roof framing structures (steel, concrete). Beam Grids.
- 6. Columns. Elastic Buckling of columns.
- 7. Floor and Roof framing structures. Design of steel floor framing. Design of concrete floor framing.
- 8. Frames. Single-bay frames. Three hinged frames. Intermediate. Frames. Cantilever, braced, pitched frames. Multi-bay, multi-storey frames. Vierendeel trusses. 9. Actual Building Cases.

Learning Activities and Teaching Methods:

The teaching method in this course consists of Lecture, Individual and group work, Case studies, Tutorials. Presentations. Pin-ups.

Assessment Methods:

Project presentation, Poster, Pin-up, Weekly assignments, Final Exam

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Building Support Structures Analysis and Design using SAP2000 software	Wolfgang Schueller	Computers and Structures, Inc. Berkley, California	2008	978-0-923907- 75-4

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Structures and Architecture: ICSA 2013: New concepts, applications and challenges; Innovative architectural and structural design; ; "Hybrid Structures: A case of a pedestrian	T.Sophocleous; M.C.Phocas and A.Michael;	Paulo J. da Sousa Cruz		
"Design of Structures in Architecture. Architectural Vision towards Structural Innovation", Architectural Design and Construction Education. Experimentation towards Integration	Phocas, M.C., Sophocleous, T.,	ENHSA- EAAE Architectural Design Teachers' and Construction Teachers' Networks.		