

Course Syllabus

Course Code	Course Title	ECTS Credits
ARCH-211	Structural Mechanics - Statics I	4
Prerequisites	Department	Semester
ARCH-111	Architecture	Fall
Type of Course	Field	Language of Instruction
Required	Architecture	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr Tonia Sophocleous Lemonari	2 nd
Mode of Delivery	Work Placement	Corequisites
Face to face	N/A	-

Course Objectives:

The main objectives of the course are to:

- Introduce the principles of Statics through examples and demonstrations
- Illustrate principles of Axial Resistance, Joinery and Lateral Stability.
- Introduce the principles of truss structural systems' behavior
- Analyse case studies showcasing the architectural implications of structure
- Implement complex systems combining 2dimensional arrangements of members in both tension and compression.
- Introduce structural analysis methods (i.e. analytical, graphical) to solve structural models
- Use computer modelling for structural analysis, SAP2000 software
- Interpret analytical and graphical calculations following the method of joints and sections
- Compare the magnitude of forces such as dead, live and lateral
- Interpret structural behavior of systems
- Utilise hands-on and rules of thumb in aiding the understanding of structural systems.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Describe and analyse structural systems in architecture.
- 2. Analyse truss systems following a qualitative analytical process of hands on observation.
- 3. Analyse structural systems of realised buildings.

- 4. Compare building structure systems and their behavior under various types of load action.
- Illustrate concepts of structural types.
- 6. Interpret modeling results of the professional software SAP2000.
- 7. Employ elementary mathematics to structural systems.
- 8. Apply rules of thumb to predict structural behavior.
- 9. Asses the computer software results.
- 10. Evaluate structural elements using simple equilibrium checks.
- 11. Judge structural member sizing towards optimization.
- 12. Compare and evaluate structure schemes through case study analysis.

Course Content:

- 1. Basic Structure Concepts: Statics
- 2. Forces. Components. Resultants. Actions.
- 3. Moments and Couples.
- 4. Force Systems.
- 5. Equilibrium of Forces. Resultant Force. Redundancy and Stability.
- 6. Free body diagrams.
- 7. Equilibrium of Particles.
- 8. Equilibrium of Bodies.
- 9. Supports. Member support conditions.
- 10. Actual Building Cases. Truss types.
- 11. Simple trusses. Funicular trusses. Fan trusses.
- 12. Compound trusses. Complex trusses.
- 13. Analysis and preliminary design of trusses.
- 14. Modelling trusses using SAP2000.
- 15. Determinate and indeterminate trusses.

Learning Activities and Teaching Methods:

The teaching method in this course consists of Lectures, Individual and group work, Case studies, Tutorials, Presentations, Pin-ups.

Assessment Methods:

Project presentation. Poster. Pin-up, Weekly assignments and Final Exam.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Building Support Structures Analysis and Design using SAP2000 software	Wolfgang Schueller	Computers and Structures, Inc. Berkley, California	2008	978-0- 923907-75-4

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Engineering Mechanics Statics	Russell C. Hibbeler	Prentice Hall	2006	013-127-844-4
Structures, 6/E	Daniel Lewis Schodek, Harvard University Martin Bechthold, Harvard University	Prentice Hall	2008	9780131789395
Structure and Architecture	Angus J. Macdonald, Uni of Edinburg	Elsevier, Architectural Press	2001	0 7506 4793 0
Structure As Architecture	Andrew W. Charleson	Elsevier, Architectural Press	2005	0 7506 6527 0