Course Code	Course Title	ECTS Credits
OGEE-350	Well Construction &	8
	Completion Design	
Department	Semester	Prerequisites
Engineering	Fall, Spring	OGEE-220, OGEE-320,
		OGEE-330
Type of Course	Field	Language of Instruction
Required	Oil & Gas Engineering	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	3 rd	Dr Sarris Ernestos
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce the students to the fundamental concepts of well log interpretation.
- Provide solid knowledge to interpret well logs to in order to make decisions relative to well completion, etc.
- Provide solid knowledge to read well logs, apply the necessary environmental corrections, and perform well log interpretations to hydrocarbon bearing formations and communicate the results effectively.
- Provide solid technical knowledge to conduct library and/or internet search and communicate the results through an oral presentation.
- Provide solid technical knowledge to recognize safety issues including handling radioactive sources.
- Help the students obtain practical knowledge and technical knowhow through simulations with software in the computer laboratory.

Learning Outcomes:

After completion of the course students are expected to be able to:

- Evaluate near wellbore damage caused by various operations such as drilling, completion, etc, and quantify effect on well productivity.
- Make justification on selection of stimulation methods (matrix acidizing, hydraulic fracturing and acid fracturing) for different types of reservoir/well candidates.
- Interpret fundamental and criteria of well stimulation to enhance oil/gas recovery and improve reservoir management
- Pre-screen appropriate fracturing fluid, chemical additives, and proppant based on formation conditions.
- Perform optimal design of fracturing treatment on real wells in project by construction of data set, prediction of fracture geometry and determination of

- pumping schedule etc., using 2D fracturing model and pseudo-3D model.
- Cooperate in a team to solve problems in the project
- Provide post-fracturing evaluation by estimate of fracture half length, fracture conductivity, formation permeability and folds of increase in productivity.
- Handle numerical calculations of the hydraulic fracturing technique through computer simulations to predict the fracture pressure and fracture dimensions.

Course Contents:

- Introduction & overview: hydraulic fracturing and acidizing
- Productivity enhancement from stimulation and candidate selection
- Rock mechanics, in-situ stress and fracture geometry
- Rheology of fracture fluid
- Mini-frac test
- 2D fracture models and 3D fracture models
- Fracture treatment design
- Tip screen-out design: frac & pack
- Treatment pressure analysis and Post-treatment evaluation
- Acidizing
- Computer simulation laboratory (software tutorials)

Learning Activities and Teaching Methods:

Lectures, projects, software simulations, discussion

Assessment Methods:

Homework, project assignments, simulation laboratory reports, tests, final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
M. Economides	Modern Fracturing:	Energy	2007	9781604616880
and G. Martin	Enhancing Natural	Tribune		
	Gas Production	Publishing		
Schlumberger	Commercial Software: FracCADE	Schlumberger	2009	

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
P. Valko and M.	Hydraulic Fracture	John Wiley &	1995	0471956643
Economides	Mechanics	Sons		