

Course Code	Course Title	ECTS Credits
MATH-192	Calculus for the Life	6
	Sciences I	
Department	Semester	Prerequisites
Computer Science	Fall, Spring	MATH-180
Type of Course	Field	Language of Instruction
Required	Mathematics	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	$1^{\text{st}} \text{ or } 2^{\text{nd}}$	Dr Nectarios Papanicolaou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of this course are to:

- Introduce students to limits and continuity of a function of one real variable
- Provide students with a deep knowledge of differentiation techniques
- Cover in detail all aspects of curve sketching (including relative extrema, vertical and horizontal asymptotes)
- Thoroughly discuss essential integration techniques
- Make students aware of the applications of Calculus to basic biological problems

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Calculate limits algebraically
- 2. Determine whether a function is continuous
- 3. Compute derivatives using limits of difference quotients
- 4. Apply differentiation techniques to compute first and higher-order derivatives
- 5. Use derivatives to find maxima and minima. .
- 6. Sketch the graphs of polynomial and rational functions
- 7. Compute indefinite integrals using properties of integrals and the method of usubstitution.
- 8. Use the fundamental theorem of Calculus to evaluate definite integrals
- 9. Solve simple Biology problems with the aid of derivatives and integrals

Course Contents:

- 1. Review of Basic Functions
- 2. Limits and Continuity
 - a. Numerically and Graphically
 - b. Algebraic Computation of Limits
- 3. Derivatives

- a. Average Rates of Change/ Difference Quotients
- b. Instantaneous Rates of Change
- c. Differentiation Techniques
- d. The Chain Rule
- e. Higher-Order Derivatives
- 4. Applications of Differentiation
 - a. Using First Derivatives for finding Maxima and Minima
 - b. Using Second Derivatives for finding Maxima and Minima
 - c. Graph Sketching: Asymptotes and Rational Functions
 - d. Absolute Maxima and Minima
 - e. Maximum-Minimum Problems, Biology applications
 - f. Implicit Differentiation
- 5. Integration
 - a. Antiderivatives Basic Integration Techniques
 - b. Signed Area
 - c. The Fundamental Theorem of Calculus
 - d. Properties of Definite Integrals. Applications
 - e. Integration by Substitution

Learning Activities and Teaching Methods:

Lectures, Homework.

Assessment Methods:

Assignments, quizzes, two mid-term exams, and a final exam

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
M. L.	Calculus for the	Addison	2006	0321279352
Bittinger,	Life Sciences.	Wesley		
N.Brand,		-		
J.Quintanila				

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Howard Anton,	Calculus: Late	Wiley	2009	0470183497
Irl Bivens,	Transcendentals,			
Stephen Davis	Combined (or			
_	Single Variable)			
	9th Edition			
Frederick R.	Modeling the	Brooks/Cole	2004	0534404863
Adler	Dynamics of Life:			
	Calculus and			
	Probability for Life			
	Scientists, 2 nd edit.			
	Calculus for	Prentice-Hall	2010	0321644689
Claudia	Biology and			
Neuhauser	Medicine			
	3 rd Edition			