University of Nicosia, Cyprus

Course Code	Course Title	ECTS Credits
CHEM-245	Organic Chemistry	6
Department	Semester	Prerequisites
Life and Health	Fall, Spring	CHEM-135 Physical Chemistry
Sciences		
Type of Course	Field	Language of Instruction
Required	Chemistry	English
Level of Course	Year of Study	Lecturer
1 st Cycle	2^{nd}	Dr. Photos Hajigeorgiou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce students to the basic principles of organic chemistry,
- Cultivate in students an appreciation of the role of organic chemistry in everyday life and in biological systems
- Help students develop sound practical skills in the unique laboratory explorations of organic chemistry
- Enable students to become competent with the organic chemistry material included in the Medical College Admission Test (MCAT)

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Draw the chemical structure of and name a wide variety of classes of organic compounds
- 2. Discuss the physical and chemical properties of saturated, unsaturated and aromatic hydrocarbons
- 3. Discuss the physical and chemical properties and main reactions of oxygencontaining organic compounds, including unsaturated carbonyl group compounds
- 4. Discuss the structure and reactivity of nitrogen-containing organic compounds
- 5. Discuss the structure and chemical reactivity of phosphorus-containing organic compounds
- 6. Employ the chemical reactions of all above-named compounds to propose multistep syntheses of a wide variety of organic compounds
- 7. Interpret a variety of spectra, including IR, visible, UV and proton NMR spectra, in the determination of the chemical structures of organic compounds
- 8. Employ a wide variety of organic mechanisms to predict the products of

- organic chemical reactions, including the regiochemistry and stereochemistry of the reaction intermediates and final products
- 9. Discuss the structures, functions, and key chemical reactions of the principal groups of biological compounds, including carbohydrates, lipids, amino acids, and proteins

Course Contents:

- 1. Functional Groups and Organic Nomenclature
- 2. Hydrocarbons
 - i. alkanes
 - ii. cycloalkanes
 - iii. alkenes
 - iv. aromatics
 - v. alkynes
- 3. Oxygen Containing Molecules
 - i. alcohols
 - ii. aldehydes and ketones
 - iii. carboxylic acids
 - iv. carboxylic acid derivatives
- 4. Nitrogen Containing Compounds
- 5. Phosphorus Containing Compounds
- 6. Molecular Spectroscopy and Structure Determination
 - i. absorption spectroscopy (IR and UV)
 - ii. mass spectrometry
 - iii. proton NMR spectroscopy
- 7. Organic Stereochemistry
- 8. Organic Synthesis and Mechanisms
- 9. Biological Molecules
 - i. carbohydrates
 - ii. amino acids, peptides and proteins
 - iii. lipids

Laboratory Experiments:

- 1. Laboratory Safety Demonstrations
- 2. Dibenzalacetone by Aldol Condensation
- 3. Fractional Distillation
- 4. Extraction of Caffeine from Tea Leaves
- 5. Extraction of Limonene from Citrus Fruit
- 6. Cyclohexanone from Cyclohexanol
- 7. Adipic Acid from Cyclohexanone
- 8. Fischer Esterification: Synthesis of Methyl Benzoate
- 9. Nitration of Methyl Benzoate

Learning Activities and Teaching Methods:

Lectures, Laboratory Practical Sessions, and Assignments.

Assessment Methods:

Laboratory Practical Sessions, Tests, Final Examination

Required Textbooks/Reading:

	8			
Authors	Title	Publisher	Year	ISBN
1. J.	Organic Chemistry	Brooks/Cole	2007	ISBN: 0-534-
McMurry		Publishing Company	7 th Edition	42005-2
2. K.L.	Organic Experiments	Houghton Mifflin	2004	ISBN: 0-618-
Williamson		Company	9 th Edition	30842-3

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
1. S.	Study Guide and Student	Thompson	2004	ISBN: 0-534-
McMurry	Solutions Manual for John	Brooks/Cole	6 th	40934-2
	McMurry's Organic Chemistry		Edition	
2. T.W.G.	Organic Chemistry	Wiley	2004	ISBN: 978-0-
Solomons and			8 th	471-41799-6
C.B. Fryhle			Edition	