

University of Nicosia, Cyprus

Course Code	Course Title	ECTS Credits
BISC-532	Molecular Genetics	8
Department	Semester	Prerequisites
Life and Health	Spring	None
Sciences		
Type of Course	Field	Language of Instruction
Required	Biomedical Sciences	English
Level of Course	Year of Study	Lecturer
2 st Cycle	1 st	Dr. Fellekis Kyriakos
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

This course will promote students understanding of advanced molecular biology by focusing on new breakthrough knowledge and technology advancements.

The aims of the course are to:

- Present the new concepts and technologies used in molecular biology
- Explain the use of new molecular biology experiments to address important biological questions.
- Relate the basic principles of molecular biology to cloning, stem cell research and gene therapy
- Review scientific papers based on molecular biology advancements
- Discuss bioethics issues associated with scientific research and discovery

Learning Outcomes:

After completion of the course students are expected to be able to:

- Explain basic and advanced molecular biology concepts in contemporary molecular and genetics research.
- Critically assess and discuss scientific publications regarding experimental design and validity of results
- Formulate research questions and propose experimental approaches using molecular biology concepts and technologies.
- Demonstrate appreciation and knowledge of how to deal with ethical issues relating to science.
- Apply critical thinking, problem solving and demonstrate reference research skill in molecular biology
- Communicate molecular biology facts and research findings in a scientific manner

Course Contents:

- 1. Chromatic structure and remodeling
- 2. Mechanisms of DNA synthesis, replication and repair
- 3. Bacterial and Eukaryotic transcription; transcriptional activation
- 4. RNA structure, catalysis and processing; Regulation of Translation;
- 5. Functional Genomics, Proeomics
- 6. Epigenetics; Imprinting and Dosage Compensation
- 7. Posttranscriptional Gene Silencing
- 8. RNAi/Talen Technology
- 9. MicroRNA in Biology and disease
- 10. CRISPR Technology for gene editing
- 11. New approaches of treating diseases; gene therapy
- 12. Genetic testing in populations; cancer genetics
- 13. Immunogenetics
- 14. Genetic manipulations of cells and animals
- 15. Bioinformatics: function and structure from sequence

Learning Activities and Teaching Methods:

Lectures; presentations and discussions of molecular biology based scientific literature. Cooperative learning.

Assessment Methods:

Assignments/Exercises; Oral presentations and written esseays; Mid-term and Final Exam

Required Textsoons, Reading.					
Authors	Title	Publisher	Year	ISBN	
James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine Richard Losick	Molecular Biology of the Gene	Benjamin Cummings	7 edition (2013)	ISBN-10: 0321762436 ISBN-13: 978- 0321762436	
Bruce R. Korf, Mira B. Irons	Human Genetics and Genomics, Includes Wiley E- Text	Wiley- Blackwell;	4 edition (2013)	ISBN-10: 0470654473 ISBN-13: 978- 0470654477	

Required Textbooks/Reading:

Recommended Textbooks/Reading:

Authors	Title	Publishe	er	Year	ISBN
Tom Strachan, Andrew Read	Human Molecular Genetics, Fourth E [Paperback]		Garland Science;	4 edition (2010)	ISBN-10: 0815341490 ISBN-13: 978- 0815341499

Gerald Karp Cell and Molecular Biology: Concepts and Experiments	Wiley;	7 edition (2013)	ISBN-10: 1118206738 ISBN-13: 978- 1118206737
--	--------	---------------------	---