University of Nicosia, Cyprus

Course Code	Course Title	ECTS Credits
BISC-512	Bioanalytical and	8
	Diagnostic Technologies	
Department	Semester	Prerequisites
Life and Health	Spring	None
Sciences		
Type of Course	Field	Language of Instruction
Required	Biomedical Sciences	English
Level of Course	Year of Study	Lecturer
2 st Cycle	1 st	Dr. Demoliou Catherine
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

This course aims to provide a specialized understanding of fundamental techniques and contemporary molecular and proteomics tools that are used to analyze biological processes and molecules in state-of-the-art research and diagnosis. The main objectives of the course are to:

- Demonstrate how basic scientific principles and natural molecules have been used to develop products for analytical technology applications.
- Demonstrate how biological processes and nonotechnology have been adopted in the development of modern bioanalytical techniques in genomic and proteomic research.
- Demonstrate the scientific basis of modern instrumentation and the possibilities of database technology.
- Review scientific literature that shows current practices and advancements in the relevant fields of modern technologies used in biosciences.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. List the major categories of laboratory related chemical and biotechnology tools and account for their application in the analysis of biological samples.
- 2. Describe the function of basic analytical instruments and the principles of how they work in the isolation, analysis and characterization of cells, molecules, reactions and molecular interactions.
- 3. Relate modern nonotechnology and biotechnology products and applications to the physicochemical properties of biological macromolecules to be diagnosed/isolated.
- 4. Appraise the appropriateness of a specific biotechnology application/system for

- molecular, cellular or whole tissue level identification/isolation.
- 5. Appraise the potential of analytical technology tools and data based technology in disease diagnosis
- 6. Review critically scientific literature and report on current practices in the relevant fields of analytical technology for biological samples.

Course Contents:

- 1. Tissue and cell isolation-characterization, functional studies on isolated cells
- 2. Separation and Analysis of biological materials (Ultracentrifugation)
- 3. Nonotechnology: Immobilized biomolecules in bioanalysis.
- 4. Fluorescence and chemiluminescence Principles and Technology
- 5. Flow Cytometry applications
- 6. Enzyme assay: Types, Kinetics, Inhibition
- 7. Separation and Analysis of biological materials (Electrophoresis)
- 8. Separation and Analysis of biological materials (Chromatography, Spectroscopy)
- 9. Automated DNA sequencing, in situ hybridization, DNA microarray
- 10. Protein sequencing strategies and analyses; proteomics
- 11. Biomolecular engineering and cell and tissue engineering
- 12. Biosensors
- 13. Drug delivery technology
- 14. Nuclear analytical methods in Life Sciences
- 15. Fluorescence, Electron and Atomic Force Microscopy

Learning Activities and Teaching Methods:

Lectures; presentations and discussions of biotechnology/nonotechnology examples from scientific literature. Cooperative learning. Demonstration: Familiarization with data/graphs of experimental output; video presentations of technological applications and analytical instruments used.

Assessment Methods:

Assignments/Exercises; Oral presentations and written reports; Mid-term and Final Exam

Required Textbooks/Reading:

required reasons/reducing.				
Authors	Title	Publisher	Year	ISBN
Prakash Singh Bisen, Anjana Sharma	Introduction to Instrumentation in Life Sciences	September 26, 2012 by CRC Press	CRC Press; 2012	ISBN-10: 1466512407 ISBN-13: 978- 1466512405
Seamus Higson	Analytical Biotechnology	John Wiley & Sons Inc	2011, 1 st ed.	0470723068

Recommended Textbooks/Reading:

	ended Textbooks/N			_
Authors	Title	Publisher	Year	ISBN
D. P. Clark, Nanette Pazdernik	Biotechnology: Applying the Genetic Revolution	Academic Press	2008, 1st ed.	ISBN-10: 0121755525
Editor CHALLA S.S.R. KUMAR	Nanotechnologies for the Life Sciences	John Wiley and Sons, Inc	2012	Online ISBN: 9783527610419 DOI: 10.1002/9783527610419
Edited by: Claudia Plant and Christian Böhm	Database Technology for Life Sciences and Medicine	World Scientific Publishing Company	2010	ISBN: 978-981-4464- 81-9 (ebook) ISBN: 978-981-4307- 71-0 (ebook - Institutions Only)
Victor A. Gault, Neville H. McClenaghan	Understanding Bioanalytical Chemistry: Principles and Applications	Willey	2009	ISBN: 978-0-470- 02907-7
SABARI GHOSAL, A.K. SRIVASTAVA	Fundamentals of Bioanalytical Techniques and Instrumentation [Kindle Edition]	PHI Learning Private Limited	(July 14, 2013)	ASIN: B00DY6FVDI