

## University of Nicosia, Cyprus

| Course Code            | Course Title                 | ECTS Credits                   |
|------------------------|------------------------------|--------------------------------|
| BIOL-422               | Basic Concepts of Physical   | 8                              |
|                        | Biochemistry                 |                                |
| Department             | Semester                     | Prerequisites                  |
| Life and Health        | Spring/Fall                  | BIOL-321, -322 Biochemistry I, |
| Sciences               |                              | II                             |
| Type of Course         | Field                        | Language of Instruction        |
| Life Sciences Elective | Biology, Biochemistry        | English                        |
| Level of Course        | Year of Study                | Lecturer                       |
| 1 <sup>st</sup> Cycle  | $3^{\rm rd}$ or $4^{\rm th}$ | Dr. Demoliou Catherine         |
| Mode of Delivery       | Work Placement               | Co-requisites                  |
| Face-to-face           | N/A                          | None                           |

# **Objectives of the Course:**

The course aims to provide an understanding of the physical principles which underlie the biochemical properties of biological molecules. The main objectives of the course are to:

- Introduce concepts from physical chemistry to explain biochemically relevant phenomena.
- Describe the application of physical and chemical methods and concepts to understand the relationships between molecular sequence, molecular structure and molecular function
- Present an overview and examples of techniques and experimental approaches used to investigate molecular structure and function.

### **Learning Outcomes:**

After completion of the course students are expected to be able to:

- 1. Identify the physical chemistry laws which govern the biochemical properties of biological macromolecules.
- 2. Associate structure-function relationships of biological molecules with physical and chemical forces in solution.
- 3. Associate the techniques used for purification and analysis of molecular structure with the physicochemical properties of biological molecules.
- 4. Discuss how thermodynamics and kinetics are used to understand molecular structure, function and interactions and calculate relevant parameters.
- 5. Identify and explain the techniques used to investigate molecular interactions and to determin the 3D structure of macromolecules.
- 6. Appraise the use of analytical instruments in solving problems in biology and medicine.

#### **Course Contents:**

- 1. Biological Macromolecules; intermolecular forces and interactions.
- 2. Thermodynamic Principles.
- 3. Molecular Thermodynamics.
- 4. Enzyme kinetics; equilibrium systems.
- 5. Methods for the Separation and Characterization of Macromolecules.
- 6. Solutions and Macromolecules; density, ultracenrifugation.
- 7. Crystallography and X-Ray Diffraction.
- 8. Quantum Mechanics; Light Spectroscopy; fluorescence.
- 9. Absorption Spectroscopy, Linear and Circular Dichroism.
- 10. Emission Spectroscopy.
- 11. Nuclear Magnetic Resonance Spectroscopy.
- 12. Macromolecules in Solution: Thermodynamics and Equilibria.
- 13. Thermodynamics of Transport Processes.

### Learning Activities and Teaching Methods:

Lectures, discussions on relevant literature and examples of data output, cooperative learning, use of computer databases (PDB) and molecular modelling programs to build and analyze proteins, DNA and drugs.

### **Assessment Methods:**

Assignments, Tests and Mid-term Exam; Final Exam

### **Required Textbooks/Reading:**

| Authors                              | Title                                                                           | Publisher                     | Year                      | ISBN                |
|--------------------------------------|---------------------------------------------------------------------------------|-------------------------------|---------------------------|---------------------|
| 1. I. Tinoco,<br>K. Sauer,<br>et.al. | Physical Chemistry:<br>Principles and<br>Applications in<br>Biological Sciences | Prentice Hall<br>Wiley        | 2001, 4 <sup>th</sup> ed. | ISBN:<br>0130179604 |
| 2. N.C.<br>Price et.al               | Principles and<br>problems in physical<br>chemistry for<br>biochemists          | Oxford<br>University<br>Press | 2001, 3rd<br>ed.          | ISBN:<br>0198792816 |

### **Recommended Textbooks/Reading:**

| Authors               | Title                          | Publisher            | Year                     | ISBN                               |
|-----------------------|--------------------------------|----------------------|--------------------------|------------------------------------|
| 1. Nelson             | Lehninger principles           | Worth                | $3^{rd}$ ed.             | ISBN-                              |
| D.Leninger            | of biochemistry                | Publishers           | 2000                     | 1572599316                         |
| 2. Sheehan,<br>David, | Physical<br>Biochemistry:      | John Wiley &<br>Sons | 2 <sup>nd</sup> ed, 2009 | <b>ISBN-10:</b> 0470856025         |
|                       | Principles and<br>Applications |                      |                          | <b>ISBN-13:</b> 978-<br>0470856024 |