University of Nicosia, Cyprus

Course Code	Course Title	ECTS Credits
BIOL-421	Enzymology	8
Department	Semester	Prerequisites
Life and Health	Spring/Fall	BIOL-321322 Biochemistry I,
Sciences		II
Type of Course	Field	Language of Instruction
Life Sciences Elective	Biology, Biochemistry	English
Level of Course	Year of Study	Lecturer
1 st Cycle	3 rd or 4 th	Dr. Demoliou Catherine
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The course aims to provide students with further knowledge on what enzymes are, how they work and their importance in life. The main objectives of the course are to:

- Provide an overview of the various classes of enzymes, the basis of enzyme nomenclature and the mechanisms of enzyme regulation in cells.
- Describe the role of cofactors and present the principles of enzyme kinetics and how they are applied to study enzyme stability, activity and inhibition.
- Demonstrate the role of active-site amino acid residues in enzyme catalysis using specific examples from several enzyme families.
- Review biotechnology applications of enzymes in industry and disease diagnosis.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Differentiate enzyme categories and names according to enzyme function.
- 2. Discuss the relationship of structure-function in enzyme catalysis and explain the basis of activation energy, catalysis and the role of cofactors.
- 3. Use enzyme kinetics parameters (Michaelis-Menten) to solve biochemical problems on enzyme structure, kinetics and mechanisms from simulated experimental data.
- 4. Differentiate/compare and discuss the types of inhibitions of enzyme activity and calculate enzyme inhibition kinetic parameters.
- 5. Employ specific examples and illustrate the chemical basis of enzyme catalysis, specificity and control of enzyme activity.
- 6. Discuss enzyme applications in biotechnology and disease diagnosis.
- 7. Demonstrate lifelong learning skills.

Course Contents:

1. Introduction to what enzymes are.

- 2. The structure of enzymes.
- 3. The naming and classification of enzymes,
- 4. Bioenergetics, catalysis and kinetics I.
- 5. Bioenergetics, catalysis and kinetics II
- 6. Single substrate enzymes-catalyzed reactions.
- 7. Multi-substrate enzymes-catalyzed reactions.
- 8. The biosynthesis of enzymes
- 9. Specificity of enzymes
- 10. Extraction and purification of enzymes
- 11. Factors affecting enzyme stability
- 12. Applications of enzymology I
- 13. Applications of enzymology II

Learning Activities and Teaching Methods:

Lectures will be complemented with problem solving exercises on enzyme kinetics and with discussions on presentations of case-examples of enzymes from literature papers.

Assessment Methods:

Assignments, Tests and Mid-term Exam; Final Exam

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
N. Price, L.Stevens	Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins	Oxford University Press	1999, 3 rd ed.	ISBN-10: 019850229X
Copeland, Robert Allen	Enzymes: a practical introduction to structure, mechanism, and data analysis.	Wiley	2000, 2 nd ed.	ISBN-10: 0471359297

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
A.P. McCabe	Industrial Enzymes: Structure, Function and Applications	Kluwer Academic Publishers	2007	ISBN-10 : 1402053762
Wondatir Nigat Aragaw	Introduction to Enzymology: Enzymes: The Catalysts of Biological Systems	LAP LAMBERT Academic Publishing	2010	ISBN-10: 3843364621 ISBN-13: 978- 3843364621