

Course Syllabus

Course Code	Course Title	ECTS Credits	
BIOL-322	Biochemistry II	8	
Prerequisites	Department	Semester	
BIOL-321	Life and Health Sciences	Spring	
Type of Course	Field	Language of Instruction	
Required	Biochemistry	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr. Christos Papaneophytou	3 rd	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- Provide students with a comprehensive understanding of oxidative phosphorylation and the energy requirements for cell growth and maintenance.
- Make students aware of the metabolic pathways involving the four major metabolic compounds (carbohydrates, lipids, amino acids and nucleotides).
- Discuss the mechanisms by which these pathways are integrated and regulated and emphasize the relationship of bioenergetics to the physiological state.
- Relate the disruption of metabolic functions to disease states using specific examples.
- Enable students to develop basic laboratory skills to study biochemical molecules.

Learning Outcomes:

Upon successful completion of this course, students will be able to:

- 1. Describe how cells obtain energy from glucose oxidation both aerobically and anaerobically.
- 2. Contrast anabolic and catabolic pathways, outlining their key enzymatic steps.
- 3. Demonstrate how plants and other photosynthetic organisms convert light energy into chemical energy.
- 4. illustrate the role of the pentose phosphate pathway in producing NADPH and pentose sugars.
- 5. Map out the pathways for the synthesis and breakdown of glycogen and discuss their coordinated regulation in animal cells.
- 6. Explain the fundamental pathways for fatty acid breakdown and biosynthesis, including

- their regulatory mechanisms.
- 7. Diagram the pathways of protein degradation and amino acid catabolism, including the urea cycle.
- 8. Explain nitrogen fixation and its significance in amino acids biosynthesis.
- 9. Illustrate the primary pathways of nucleotide biosynthesis.
- 10. Diagram the pathways of steroid biosynthesis.
- 11. Utilize Bioinformatics tools to predict enzymatic pathways and interactions.
- 12. Employ AI techniques to analyze complex datasets derived from biochemical experiments, enhancing understanding and accuracy in interpreting results.
- 13. Acquire laboratory skills in protein isolation, electrophoresis, Western blot analysis, and enzyme kinetics.

Course Content:

Lectures:

- 1. Introduction to metabolism
- 2. Glycolysis and Gluconeogenesis
- 3. The Citric Acid Cycle
- 4. Oxidative Phosphorylation
- 5. The Light Reactions of Photosynthesis
- 6. The Calvin Cycle and the Pentose Phosphate Pathway
- 7. Glycogen Metabolism
- 8. Fatty Acid Metabolism
- 9. Protein Turnover and Amino Acid Catabolism
- 10. Biosynthesis of Amino Acids
- 11. Biosynthesis of Nucleotides
- 12. Biosynthesis of Membrane Lipids and Steroids

Laboratory Sessions:

- 1. Dilutions, Concentrations, Acids, Bases and Buffers
- 2. Spectrophotometry: Beer's Law, Standard Curves and Protein Concentration
- 3. Enzyme Purification: Homogenization, centrifugation, ammonium sulfate precipitation, assay for lactate dehydrogenase (LDH) enzyme activity
- 4. Enzyme Kinetics of LDH: Michaelis-Menten graph, Km and Vmax calculations
- 5. Native Gel Separation of LDH isozymes
- 6. SDS-PAGE of LDH
- 7. Western Blot of LDH

Learning Activities and Teaching Methods:

Lectures (4h/week); Laboratory Sessions (3h/week); Review of literature papers, Cooperative learning.

Assessment Methods:

Assignment; Midterm Examination (1); Lab Report; Final Examination (1)

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Biochemistry, 10 th ed.	J.M. Berg, G.J. Gatto Jr., J.K.Hines J.L. Tymoczko, L. Stryer	W.H. Freeman & Co.	2023	ISBN-13: 9781319486785 ISBN-10: 1319486789
Lehninger Principles of Biochemistry, 8 th ed.	D.L. Nelson, M. Cox	W.H. Freeman & Co.	2021	9781319417420
Experiments on Biochemistry, 2 nd ed.	S.O. Farrell, L.E. Taylor	Thomson Brooks/Cole	2006	ISBN-13: 978-0- 495-01317-4

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Principles of biochemistry. 5 th ed.	D.J. Voet, J.G. Voet, C.W. Pratt	Wiley	2018	ISBN-13: 9781119455103 ISBN-10: 1119455103