

Course Syllabus

Course Code	Course Title	ECTS Credits
BIOL-101	General Biology I	6
Prerequisites	Department	Semester
None	Life Sciences	Fall
Type of Course	Field	Language of Instruction
Required	Biology	English
Level of Course	Lecturers	Year of Study
1 st Cycle	Dr Stella Nicolaou (lectures) Dr Mary Halebian (laboratory)	1 st
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

introduce students to the basic principles of Biology (The Science of Living beings). The
course also aims to allow students to practice hands-on basic laboratory and problem
solving techniques and report scientific conclusions following the Scientific Method.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Define the chemical structure of basic biological macromolecules.
- 2. Define the structure and function of cell membranes and organelles and compare prokaryotic and eukaryotic cells.
- 3. Discuss and explain cellular respiration and photosynthesis.
- 4. Discuss cell growth and reproduction and identify the basis of genetic inheritance.
- 5. Identify key Al technologies currently used in biological sciences.
- 6. Discuss the scientific method and to analyse how one arrives at scientific conclusions.
- 7. Practice basic laboratory skills and to prepare a formal laboratory report.

Course Content:

- 1. Introduction to the Science of Life, Levels of Organization
 - LAB: Introduction and Laboratory Safety Issues
- 2. The chemical basis of life
 - LAB: The process of Scientific Inquiry: The elements of an experiment
- 3. Properties of Water, pH, pKa, Acid/bases
 - LAB: Use of the Microscope
- 4. Structure function of macromolecules in the living cell
 - LAB: Biomolecules: Qualitative determination of Sugars, Lipids, Proteins & DNA.
- 5. Prokaryotic vs. Eukaryotic cells: cellular organelles: structure vs. function.
- 6. Membrane structure and function; cell communication.
 - LAB: Cell structure and Function: Osmosis
- 7. Laws of Thermodynamics, ATP regeneration, Enzyme Activity, Feedback Inhibition LAB: Cell metabolism: Effect of pH and temperature on the enzyme activity
- 8. Cellular respiration, electron transport and oxidative phosphorylation.
 - LAB: Respiration: Alcohol fermentation
- 9. Photosynthesis; the light and dark reactions.
 - LAB: Photosynthesis: Isolation & characterisation of leaf pigments
- 10. Cell Reproduction: Cell Cycle. / Mitosis vs Meiosis.
 - LAB: Mitosis.
- 11. Al in Biological Sciences

Learning Activities and Teaching Methods:

BIOL-101 (Lectures): 3hours/week; (Laboratory Sessions): 2hours/week, Tutorials; Cooperative and independent learning, Videos and animations

Assessment Methods:

Midterm, final and lab reports.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Biology: A Global Approach, Global Edition, 12th edition	N.A. Campbell and J.B. Reece	Pearson	2021	ISBN-13: 9781292341637

BIOL 101	Kyriacos Felekkis &	University of	2017	
Laboratory	Gregoris	Nicosia		
Manual	Papagregoriou			

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
General Biology	Bishoyi, Ashok Kumar, editor	Delve Publishing	2021	*E-book available
On the Origin of Species: By Means of Natural Selection	Charles Darwin	The Floating Press	2009	*E-book available

^{*}Access to print and electronic material provided through UNic Library. (In order to access e-books you need to be at the University premises. Otherwise, you have to change the proxy settings by contacting the Library.)