

Course Code	Course Title	ECTS Credits
PHYS-110	Elements of Physics	6
Department	Semester	Prerequisites
Electrical & Computer	Spring	None
Engineering		
Type of Course	Field	Language of Instruction
Required	Science	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	1^{st}	Dr Marios Nestoros
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The aims of this course are to:

- Give students an introduction to some of the essential principles of classical physics
- Enable students to describe qualitatively and quantitatively, physical changes taking place in the world around them.
- Encourage students to use critical thinking to discuss and analyze examples drawn from sports, medicine, biology and everyday life.

Learning Outcomes:

After completion of the course students are expected to:

- Assign the correct units of measurement to physical quantities and convert from one unit of measurement to another.
- Describe the motion of a particle in one and two dimensions using the quantities of velocity, acceleration and displacement.
- Clarify the relation between force and acceleration in an inertial frame of reference and apply Newton's Laws.
- Define and apply the principles of conservation of energy, linear momentum and angular momentum.
- Identify the transformation of energy from one form to the other and use conservation of energy to solve problems.
- Identify wave motion and the common behavior (interference, diffraction) of different types of waves (sound, electromagnetic).
- Apply the laws of geometrical optics for lenses and mirrors.
- Define Coulomb force, electric field and voltage difference
- Analyze basic electric circuits (involving capacitors, resistors) and identify energy transformations related to such circuits.

Course Contents:

Lectures

- 1. Measurement and Fundamental Units
- 2. Motion in one and two dimensions
- 3. Force and Motion
- 4. Work, Forms of Energy and Conservation of Energy
- 5. Linear Momentum, Torque, Angular Momentum
- 6. Oscillations and Waves
- 7. Static and Dynamic Electricity
- 8. Light, Optics and the Electromagnetic Spectrum

Demonstrations and Simulations:

Selection of and simulations/demonstrations from: free fall, projectile motion, Newton's Laws of Motion, statics and elasticity, conservation of mechanical energy, conservation of momentum, waves, electricity

Teaching Methods:

Lectures (2 hours/week); Tutorial (1 hour/week)

Assessment Methods:

Quizzes, Mid-Term Exam, Final Examination

Required Textbooks:

Authors	Title	Publisher	Year	ISBN
Hans C Ohanian	Principles of Physics	W. N. Norton	1st	039395773x
			Edition	

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Ben Crowell	Conceptual Physics			
	http://www.lightandma			
	tter.com/			