

Course Code	Course Title	ECTS Credits
OGEE-532DL	Solar, Wind, and Biomass	7.5
	Energy	
Department	Semester	Prerequisites
Engineering	Fall, Spring	None
Type of Course	Field	Language of Instruction
Elective	Oil, Gas and Energy	English
	Engineering	
Level of Course	Year of Study	Lecturer(s)
2 nd Cycle	$1^{\text{st}}/2^{\text{nd}}$	Dr Marios Nestoros
Mode of Delivery	Work Placement	Co-requisites
Distance Learning	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce students to renewable and sustainable forms of energy
- Provide solid knowledge on the fundamentals and principles underlying production of energy from solar, wind, and biomass
- Develop the tools for quantitative and qualitative performance analysis of solar, wind, and biomass energy systems
- Provide solid technical knowledge and skills related to the analysis and design of current energy conversion technologies

Learning Outcomes:

After completion of the course students are expected to:

- Explain the main characteristics, differences, advantages, and disadvantages of solar, wind, and biomass energy systems for particular geological and environmental situations
- Use engineering tools and practices to analyze and evaluate the performance and efficiency of renewable and sustainable energy systems
- Evaluate the natural resources of a particular site and provide quantified analysis for the potential performance of solar, wind, and biomass energy systems
- Perform calculations for the design and sizing of an optimum renewable energy system based on solar, wind, or biomass
- Describe various types of conversion technologies related to solar, wind, and biomass renewable energy systems
- Discuss current contributions and future prospects of the aforementioned renewable energy systems to the local and global energy market

Course Contents:

Introduction to renewable and sustainable energy sources

- Forms of energy, conversion, and efficiency
- Renewable energy sources
- Renewable system integration
- Promoting renewable energies

Solar energy

- Thermal energy systems
- Solar photovoltaic (PV) systems
- Types of PV modules and characteristics
- Types of PV systems (Grid connected, autonomous)
- Environmental impact and safety of PV systems
- PV integration, cost per kwh, PV resources, and future prospects

Bioenergy

- Biomass as fuel
- Bioenergy sources (energy crops, woody crops, wastes, etc.)
- Combustion of solid biomass
- Production of gaseous and liquid fuel from biomass
- Environmental benefits and impact from the use of biomass
- Biomass economics and future prospects

Wind energy

- Principles and the laws of physics behind wind harvesting
- Wind turbines
- Aerodynamics of wind turbines
- Power and energy from wind turbines
- Environmental impact and related issues
- Economics
- Wind energy prospects
- Offshore wind energy systems

Learning Activities and Teaching Methods:

Lectures, Online Questions, Projects, Discussion

Assessment Methods:

Assignments, Online Exercises, Final Exam

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Godfrey Boyle	Renewable Energy:	Oxford	2012	
	Power for a Sustainable	University		
	Future, 3 rd edition	FIESS		

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN

Mackay	Sustainable Energy –	UIT	2009
	Without the hot air	Cambridge	
B. Sorensen	Renewable Energy:	Elsevier	2010
	Physics, Engineering,	/Academic	
	Environmental	Press	
	Impacts, Economics &		
	Planning. 4 th edition.		