Course Code	Course Title	ECTS Credits
OGEE-525DL	LPG Systems	7.5
Department	Semester	Prerequisites
Engineering	Fall, Spring	None
Type of Course	Field	Language of Instruction
Elective	Oil, Gas and Energy	English
	Engineering	-
Level of Course	Year of Study	Lecturer(s)
2 nd Cycle	$1^{\text{st}}/2^{\text{nd}}$	Dr. Constantinos
		Hadjistassou
Mode of Delivery	Work Placement	Co-requisites
Distance Learning	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce students to Liquid Petroleum Gas (LPG) as a developing alternative fuel system for engines which can provide its emission benefits and the power of a gasoline engine
- Provide solid knowledge on the Modeling of the fuel system to predict and analyze its state as well as to ensure the fuel in the proper phase during the injection
- Develop the tools for quantitative and qualitative performance analysis using new dynamic and steady state models of thermodynamic fluids
- Provide solid technical knowledge by taking into account a series of experiments to verify the accuracy of the models and to investigate the causes of different fuel pressure fluctuations

Learning Outcomes:

After completion of the course students are expected to:

- Explain the main characteristics of the LPG as an alternative fuel system
- Use engineering tools to analyze and modeling of the fuel system during the injection
- Evaluate the natural resources of a particular site and provide quantified analysis for the potential performance of solar, wind, and biomass energy systems
- Perform calculations for performance analysis using models of thermodynamic fluids

Course Contents:

- Autogas the basic facts
- Properties of LPG Autogas
- Environmental Impact of Autogas Powered Vehicles

- Autogas Installation in Gasoline Vehicles
- LPG Powered Diesel Vehicles
- Application and Future Development of Autogas Sector
- Natural Gas Vehicles

Learning Activities and Teaching Methods:

Lectures, Online Questions, Projects, Discussion

Assessment Methods:

Assignments, Online Exercises, Final Exam

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Eero Teene	Modeling of a Liquid	Oxford	2008	
	Phase LPG Fuel	University		
	Injection System:	Press		
	Development,			
	Modeling, and			
	Experimentation			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
F.Mustovic	Autogas Propulsion	UIT	2011	
	Systems for Motor Vehicles	Cambridge		