

UNIVERSITY of NICOSIA

Course Code	Course Title	ECTS Credits
MENG-280	Fluid Mechanics	6
Department	Semester	Prerequisites
Engineering	Fall, Spring	PHYS-150, MATH-330
Type of Course	Field	Language of Instruction
Required	Engineering	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	2 nd	Dr Constantinos Hadjistassou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce student to the subject of fluid mechanics;
- Present the system and control volume approaches for analysing fluid behaviour;
- Explain the continuum hypothesis, viscosity, Newtonian & Non-Newtonian fluids
- Outline the fundamentals of fluid statics, hydrostatics and floating bodies;
- Appreciate the utility of differential analysis;
- Familiarize attendees with the fundamental fluid flow equations;
- Cover fluid kinematics and dynamics;
- Express the Bernoulli equation and dimensional analysis;
- Introduce the Navier-Stokes equation;
- Explain the characteristics of turbulent flow and energy losses;
- Analyze lift generation and aerodynamics;
- Elaborate on the importance of compressible and isentropic fluid flow;
- Relate fluid mechanics to real-world and research applications.

Learning Outcomes:

After completion of the course students are expected to:

- Recognise the characteristics of fluids and their behaviour;
- Utilize the system and control volume fluid methods of analysing flows;
- Distinguish between different systems of dimensions;
- Appreciate the notion of viscosity, Newtonian & non-Newtonian fluids;
- Tackle engineering problems associated with hydrostatic forces, buoyancy, and stability of floating & submerged bodies;
- Apply the conservation of mass & continuity equations;
- Understand fluid motion and deformation of fluids;
- Characterise rotational and irrotational flows;
- Know what is fluid circulation and lift-generation;

- Discern the subtleties of stream functions and the velocity potential;
- Apply the Bernoulli and energy equations to understand fluid behaviour;
- Use dimensional analysis and non-dimensionalisation;
- Appreciate the importance of Navier-Stokes equation;
- Comprehend the features of turbulent flow and energy losses;
- Calculate lift generation and aerodynamic parameters;

Course Contents:

- Distinction between fluids (liquid & gases) and solids;
- System and control volume fluid methods of analyses, Lagrangian & Eulerian descriptions;
- Dimensions, units, and systems of dimensions;
- Continuum hypothesis, velocity fields, steady & unsteady flows;
- Viscosity, Newtonian & non-Newtonian fluids;
- Pressure, hydrostatic forces, buoyancy, floating & submerged bodies;
- Integral and differential analyses;
- Conservation of mass & continuity equation;
- Motion and deformation of fluid elements;
- Fluid vorticity, rotational and irrotational flows;
- Circulation and lift-generation;
- Stream function and the velocity potential;
- Bernoulli and energy equations;
- Dimensional analysis and non-dimensionalisation;
- Euler equations, incompressible Navier-Stokes equation, approximate solutions;
- Turbulent flows, fluid energy losses, generation of eddies, Reynold's number, fluid instabilities;
- Drag, friction and pressure drag, drag reduction, lift (force) theory, aerodynamic forces, Prandtl theorem, vortex theory;

Learning Activities and Teaching Methods:

Lectures, in-class examples, discussion

Assessment Methods:

Homework, project assignments, tests, final exam

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Robert W. Fox,	Fluid Mechanics	Wiley	2011	978-1-118-02641-0
Alan T. McDonald,		-		
Philip J. Pritchard				

Recommended Textbooks/Reading.						
Authors	Title	Publisher	Year	ISBN		
Clayton T. Crowe	Engineering Fluid	Wiley	2009	9780470409435		
	Mechanics					

Recommended Textbooks/Reading: