Course Code	Course Title	Credits (ECTS)
MATH-390	Real Analysis	8
Department	Semester	Prerequisites
Mathematics	Fall, Spring	MATH-190
Type of Course	Field	Language of Instruction
Required	Mathematics	English
Level of Course	Year of Study	Lecturer
1 st Cycle	2 nd	Dr George Chailos
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- 1. Enable the student to develop a basic understanding of certain new (to the student) mathematical concepts, enhance the understanding of concepts previously encountered and to put them in the right perspective.
- 2. Develop further the student's idea of what constitutes a proof, and to enhance the understanding for the need for precise/formal language.
- 3. Provide proofs of main theorems of a first Real Analysis course, teach fundamental proving techniques and develop the critical and creative thinking.
- 4. Establish the student capable to develop further the ability to read mathematics individually.
- 5. Enable the student to comprehend how mathematicians think and develop their ideas.

Learning Outcomes:

After completion of the course students are expected to:

- 1. Discuss the mathematical concepts and notions developed throughout the course.
- 2. Implement the proofs and proving techniques of the main results of the course.
- 3. Acquire the fundamental knowledge of the theory of the structure of point sets, which is essential to the study of limits, continuity and differentiability of real valued functions.
- 4. Handle the basic theory of limits, continuity and differentiability of real valued functions, in a rigorous manner and in the formal and precise Mathematical language.

5. Acquire thorough knowledge of the fundamental theory (and properties) of the Riemann Integral using lower and upper sums, and a rigorous proof of the Fundamental theorem of Calculus.

Course Contents:

- 1. The Real Number System
 - Sets and Functions
 - Mathematical Induction
 - o The Least Upper Bound Property
 - o Countable and Uncountable sets
- 2. Sequences of Real numbers
 - o Monotone and Convergent Sequences, Limit Theorems
 - o Subsequences and the Bolzano-Weiestrass Theorem
 - Cauchy Sequences
 - Series of Real numbers
- 3. Structure of Point Sets
 - o Open, Closed and Compact Sets
 - The Cantor set (*If time permits.*)
- 4. Limits and Continuity
 - o Limit of a Function
 - o Continuous Functions and Uniform Continuity
 - Monotone Functions and Discontinuities
- 5. Differentiation
 - The Derivative
 - o The Mean Value Theorem
 - o L' Hospital's Rule
- 6. The Riemann Integral
 - o The Riemann Integral and classes of Riemann Integrable Functions.
 - o Properties of the Riemann Integral
 - o The Fundamental Theorem of Calculus

Teaching Methods:

Lectures, Handouts and Assignments

Assessment Methods:

2 Mid-Term Exams; Final Exam; Class Participation.

Required Textbook:

Authors	Title	Publisher	Year	ISBN
Manfred Stoll	Introduction to	Addison-	2001	0-321-04625-0
	Real Analysis	Wesley		

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Rudin Walter	Principles of	McGraw-Hill	1976	
	Mathematical			007054235X
	Analysis			
Patrick M.	Advanced	American	2009	0021047010
Fitzpatrick	Calculus	Mathematical Society;		0821847910
		2nd Revised edition		
Withold	A friendly	Pearson	2004	
Kosmala	introduction to	Prentice Hall		0131273167
	Analysis			