Course Code	Course Title	ECTS Credits
MATH-330E	Ordinary Differential	7.5
	Equations	
Department	Semester	Prerequisites
Computer Science	Fall, Spring	MATH-191
Type of Course	Field	Language of Instruction
Required/Elective	Mathematics	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	2 nd or 3 rd	Dr Marios A. Christou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Provide students with all the necessary techniques for solving first order ordinary differential equations.
- Familiarize students with the concepts of linear independence, fundamental solutions, general solutions and Initial Value Problems.
- Develop and demonstrate solution methods for linear higher order equations.
- Introduce students to applications and modelling using Ordinary Differential Equations.
- Provide students with the fundamentals of the power series method
- Introduce students to the Laplace Transform and its applications

Learning Outcomes:

After completing the course students are expected to be able to:

- 1. Apply a number of techniques for solving 1st order equations
- 2. Construct models and analyze simple problems using 1st order equations
- 3. Compute the solutions of higher order linear equations with constant coefficients
- 4. Apply the power series method for solving 2nd order linear equations with variable coefficients
- 5. Implement the Laplace Integral Transform and use its properties to solve linear initial value problems

Course Contents:

- 1. First Order Differential Equations-Initial Value Problems
 - Linear Equations
 - Separable Equations

- Integrating Factors
- Exact Equations
- Applications: Mixing and Compound Interest
- 2. Second Order Equations
 - Equations with Constant Coefficients,
 - Non-Homogeneous Equations,
 - Linear Independence and the Wronskian,
 - Applications: Springs and Electric Circuits
- 3. Higher Order Equations with Constant Coefficients
 - Higher Order Initial-Value Problems
 - The Wronskian for Higher Order Equations
 - The method of Undetermined Coefficients
- 4. Power Series Solutions of Second Order Equations with Variable Coefficients
 - Regular points
 - Regular and irregular singular points
 - Series solutions near a regular point
- 5. Euler Equations
- 6. The Laplace Transform Method for Solving Initial Value Problems
 - Definition of the Laplace Transform
 - Laplace Transforms of basic functions
 - Solving Initial Value Problems(IVPs) with Laplace transforms
 - IVPs with step functions and discontinuous forcing functions
 - IVPs with impulse functions and the Dirac delta function
- 7. Systems of Ordinary Differential Equations

Learning Activities and Teaching Methods:

Lectures, Handouts and Assignments

Assessment Methods:

2 Mid-Term Exams; Final Exam; Class Participation.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Boyce and	Elementary Differential	Wiley	2005	0-471-43338-1
DiPrima	Equations and Boundary			
	Value Problems			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
E. A.	An Introduction to Ordinary	Dover	1989	0-486-65942-9
Coddington	Differential Equations			