

Course Syllabus

Course Code	Course Title	ECTS Credits	
MATH-326	Linear Models I	6	
Prerequisites	Department	Semester	
MATH-225, MATH-280	Computer Science	Fall/ Spring	
Type of Course	Field	Language of Instruction	
Required	Mathematics	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr Andreas Makrides	3^{rd}	
Mode of Delivery	Work Placement	Corequisites	
Face to face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- Provide the students with in-depth knowledge of the simple linear regression model.
- Familiarize the students with the normal error regression model.
- Provide the students with in-depth knowledge of inferences in regression analysis.
- Familiarize the students with the analysis of variance approach to regression analysis.
- Provide the students with the knowledge of regression diagnostics.
- Familiarize the students with the matrix approach to regression models.
- Expose the students to real-life application examples/problems in simple linear models.
- Acquaint the students with computer software in regression analysis

Learning Outcomes:

After completion of the course students are expected to be able to:

- Develop the simple linear regression model.
- Execute inferences in regression analysis.
- Develop valid designs of linear models.

- Develop the skills to apply regression diagnostics.
- Employ techniques, skills and modern statistical tools required to solve real-life problems in Regression Analysis.

Course Content:

- The simple linear regression model.
- The normal error regression model.
- Inferences in regression models.
- The analysis of variance approach to regression models.
- Regression diagnostics.
- Matrix approach to simple linear regression analysis.

Learning Activities and Teaching Methods:

Lectures, Handouts, Assignments and In-class Exercises.

Assessment Methods:

Final Examination, Midterm Examinations, Assignments and Participation

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
M. Kutner, C. Nachtsheim, J. Neter, W. Li	Applied Linear Statistical Models	McGraw- Hill/Irwin	2004	978- 0073108742

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Linear Statistical Models: An Applied Approach	B.L. Bowerman, R. O'Connell	Duxbury Press	2000	978- 0534380182
Applied Regression Analysis and Generalized Linear Models	J. Fox	Sage Publication s	2016	978- 1452205663