

Course Syllabus

Course Code	Course Title	ECTS Credits
MATH-281	Linear Algebra II	6
Prerequisites	Department	Semester
MATH-280, MATH-190	Computer Science	Fall/Spring
Type of Course	Field	Language of Instruction
Elective	Mathematics	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	Dr. George Chailos	2 nd
Mode of Delivery	Work Placement	Corequisites
Face to Face	N/A	None

Course Objectives:

The main objectives of the course are to:

- Remind students of the fundamental theory of finite dimensional vector spaces and matrix eigenvalues and eigenvectors .
- Extend the fundamental theory of Matrices to the complex domain and cover Hermitian, Normal and Unitary Matrices.
- Further develop eigenvalues and eigenvectors and Matrix diagonalization.
- Introduce applications such matrix exponentials.
- Present the Cayley-Hamilton theorem.
- Develop the theory of finite-dimensional inner product spaces.
- Provide students with the necessary skills to construct orthonormal bases and orthogonal complements.
- Introduce QR-decomposition and the method of least squares.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Identify and use Hermitian, Normal and Unitary Matrices.
- 2. Diagonalize square matrices and use the decomposition to find matrix powers.
- 3. Apply the Cayley-Hamilton theorem to compute the exponential of a matrix.
- 4. Compute the Jordan canonical form.
- 5. Calculate the norm of a vector and the distance between two vectors

- 6. Apply the Gram-Schmidt orthonormalization process to construct orthonormal bases of vector spaces; identify orthogonal complements.
- 7. Compute the QR factorization of a square matrix.
- 8. Utilize the Least Squares method to solve linear systems of equations.

Course Content:

- 1. Review of fundamental Linear Algebra concepts
 - o Review of vector spaces.
 - o Review of eigenvalues and eigenvectors.
- 2. Matrices with complex entries
 - o Introduction to complex numbers and their arithmetic
 - o Hermitian, normal and unitary matrices
 - o Complex eigenvalues and eigenvectors
 - o The Cayley-Hamilton theorem
- 3. Applications of eigenvalues and eigenvectors
 - o Matrix diagonalization
 - Matrix powers
 - The exponential of a matrix
 - o Jordan Canonical form
- 4. Inner-product Spaces
 - o Inner product, vector norm and distance
 - Coordinates and change of base
 - o Orthogonal and orthonormal bases and Gram-Schmidt orthonormalization
 - Orthogonal subspaces and direct sums
 - o Orthogonal Projections
 - Orthogonal Matrices and the QR-decomposition
 - Least squares solutions of linear systems

Learning Activities and Teaching Methods:

Lectures, Exercises, Assignments and Tests.

Assessment Methods:

Mid-Term Exam; Final Exam; Class Participation.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Elementary Linear Algebra with Applications.	H. Anton and C. Rorres	Wiley (11 ^h Edt.)	2015	978-1-118- 67745-2

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Elementary Linear Algebra	B. Kolman and D. Hill	Pearson 9 th Edt	2017	978- 0134718538