Course Code	Course Title	ECTS Credits
GEOL-120	Engineering Geology	5
Department	Semester	Prerequisites
Engineering	Fall, Spring	None
Type of Course	Field	Language of Instruction
Required	Geology	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	1 st	Dr Ernestos N. Sarris
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce the students to the discipline of engineering geology.
- Provide the general concepts arising from the theory of plate tectonics.
- Obtain knowledge on the internal and external processes that take place on the Earth's interior and exterior.
- Appraise the consequences that arise from the external process of the erosion cycle which include the physical and mechanical properties of soils and rocks.
- Teach methods for controlling landslides and slope stability analysis.
- Prepare the students for both theoretical and applied examples specifically designed for Civil Engineers.
- Provide the principles for field methods for geological exploration of soils and rocks.

Learning Outcomes:

After completion of the course students are expected to:

- Demonstrate knowledge of the Geology's most important theory: Plate Tectonics.
- Explain the internal and external processes of the Earth and the erosion process of the rock cycle.
- Discuss how these processes (internal and external) are useful in the analysis of the physical and mechanical properties of rocks and soils.
- Explain the implications of failures like landslides and slope stability in both weak and hard soils and rocks.
- Demonstrate practical knowledge on the solution of applied problems specifically designed for civil engineers and learn also from case studies.
- Understand and explain physical phenomena that are related with geomechanics.
- Demonstrate basic knowledge and solving skills on numerical problems in geotechnics.

Course Contents:

- Introduction to Engineering Geology.
- Geology and theory of plate tectonics.
- Physical properties of rocks.
- Mechanical properties of rocks.
- Soil and rock slopes
- Landslides of soils and rocks.
- Geological exploration of soils and rocks

Learning Activities and Teaching Methods:

Lectures, in-class examples and exercises, projects, discussion.

Assessment Methods:

Homework assignments, final project, mid-term exams, final exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
David George	Engineering Geology:	Springer	2009	9783540292494
Price	Principles and Practice			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Tony Waltham	Foundations of	Taylor	2009	9780203894538
	Engineering Geology,	Francis		
	3 rd Edition			
Braja M. Das,	Principles of	Cengage	2013	9781133108665
Khaled Sobban	Geotechnical	Learning		
	Engineering, 8 th Edition	_		